To test: the null hypothesis and show that it is rejected at the
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given information :
Concept Involved:
In order to decide whether the presumed hypothesis for data sample stands accurate for the entire population or not we use the hypothesis testing.
The critical value from Table A.4, using degrees of freedom of
The values of two qualitative variables are connected and denoted in a contingency table.
This table consists of rows and column. The variables in each row and each column of the table represent a category. The number of rows of contingency table is represented by letter ‘r’ and number of column of contingency table is represented by letter ‘c’.
The formula to find the number of degree of freedom of contingency table is
Calculation:
For department A:
Department A | |||
Gender | Accept | Reject | Total |
Male | 512 | 313 | 825 |
Female | 89 | 19 | 108 |
Total | 601 | 332 | 933 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department A The row total is 825, the column total is 601, and the grand total is 933. | |
Number of male applicants rejectedin department A The row total is 825, the column total is 332, and the grand total is 933. | |
Number of female applicantsaccepted in department A The row total is 108, the column total is 601, and the grand total is 933. | |
Number of female applicantsrejected in department A The row total is 108, the column total is 332, and the grand total is 933. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department A The observed frequency is 512 and expected frequency is 531.43 | |
Number of male applicants rejectedin department A The observed frequency is 313 and expected frequency is 293.57 | |
Number of female applicantsaccepted in department A The observed frequency is 89 and expected frequency is 69.57 | |
Number of female applicantsrejected in department A The observed frequency is 19 and expected frequency is 38.43 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department A, % of male accepted =
For department B:
Department B | |||
Gender | Accept | Reject | Total |
Male | 353 | 207 | 560 |
Female | 17 | 8 | 25 |
Total | 370 | 215 | 585 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department B The row total is 560, the column total is 370, and the grand total is 585. | |
Number of male applicants rejectedin department B The row total is 560, the column total is 215, and the grand total is 585. | |
Number of female applicantsaccepted in department B The row total is 25, the column total is 370, and the grand total is 585. | |
Number of female applicantsrejected in department B The row total is 25, the column total is 215, and the grand total is 585. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department B The observed frequency is 353 and expected frequency is 354.19 | |
Number of male applicants rejectedin department B The observed frequency is 207 and expected frequency is 205.81 | |
Number of female applicantsaccepted in department B The observed frequency is 17 and expected frequency is 15.81 | |
Number of female applicantsrejected in department B The observed frequency is 8 and expected frequency is 9.19 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department B, % of male accepted =
For department C:
Department C | |||
Gender | Accept | Reject | Total |
Male | 120 | 205 | 325 |
Female | 202 | 391 | 593 |
Total | 322 | 596 | 918 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department C The row total is 325, the column total is 322, and the grand total is 918. | |
Number of male applicants rejectedin department C The row total is 325, the column total is 596, and the grand total is918. | |
Number of female applicantsaccepted in department C The row total is 593, the column total is 322, and the grand total is 918. | |
Number of female applicantsrejected in department C The row total is 593, the column total is 596, and the grand total is 918. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department C The observed frequency is 120 and expected frequency is 114 | |
Number of male applicants rejectedin department C The observed frequency is 205 and expected frequency is 211 | |
Number of female applicantsaccepted in department C The observed frequency is 202 and expected frequency is 208 | |
Number of female applicantsrejected in department C The observed frequency is 391 and expected frequency is 385 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department C, % of male accepted =
For department D:
Department D | |||
Gender | Accept | Reject | Total |
Male | 138 | 279 | 417 |
Female | 131 | 244 | 375 |
Total | 269 | 523 | 792 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department D The row total is 417, the column total is 269, and the grand total is 792. | |
Number of male applicants rejectedin department D The row total is 417, the column total is 523, and the grand total is792. | |
Number of female applicantsaccepted in department D The row total is 375, the column total is 269, and the grand total is 792. | |
Number of female applicantsrejected in department D The row total is 375, the column total is 523, and the grand total is 792. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department D The observed frequency is 138 and expected frequency is 141.63 | |
Number of male applicants rejectedin department D The observed frequency is 279 and expected frequency is 275.37 | |
Number of female applicantsaccepted in department D The observed frequency is 131 and expected frequency is 127.37 | |
Number of female applicantsrejected in department D The observed frequency is 244 and expected frequency is 247.63 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department D, % of male accepted =
For department E:
Department E | |||
Gender | Accept | Reject | Total |
Male | 53 | 138 | 191 |
Female | 94 | 299 | 393 |
Total | 147 | 437 | 584 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department E The row total is 191, the column total is 147, and the grand total is 584. | |
Number of male applicants rejectedin department E The row total is 191, the column total is 437, and the grand total is584. | |
Number of female applicantsaccepted in department E The row total is 393, the column total is 147, and the grand total is 584. | |
Number of female applicantsrejected in department E The row total is 393, the column total is 437, and the grand total is 584. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department E The observed frequency is 53 and expected frequency is 48.08 | |
Number of male applicants rejectedin department E The observed frequency is 138 and expected frequency is 142.92 | |
Number of female applicantsaccepted in department E The observed frequency is 94 and expected frequency is 98.92 | |
Number of female applicantsrejected in department E The observed frequency is 299 and expected frequency is 294.08 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department E, % of male accepted =
For department F:
Department F | |||
Gender | Accept | Reject | Total |
Male | 22 | 351 | 373 |
Female | 24 | 317 | 341 |
Total | 46 | 668 | 714 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department F The row total is 373, the column total is 46, and the grand total is 714. | |
Number of male applicants rejectedin department F The row total is 373, the column total is 668, and the grand total is714. | |
Number of female applicantsaccepted in department F The row total is 341, the column total is 46, and the grand total is 714. | |
Number of female applicantsrejected in department F The row total is 341, the column total is 668, and the grand total is 714. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department F The observed frequency is 22 and expected frequency is 24.03 | |
Number of male applicants rejectedin department F The observed frequency is 351 and expected frequency is 348.97 | |
Number of female applicantsaccepted in department F The observed frequency is 24 and expected frequency is 21.97 | |
Number of female applicantsrejected in department F The observed frequency is 317 and expected frequency is 319.03 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department E, % of male accepted =
Here r represents the number of rows and c represents the number of columns.
For all the contingency table
Degrees of freedom | Table A.4 Critical Values for the chi-square Distribution | |||||||||
0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
1 | 0.000 | 0.000 | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
The critical value is same for all the contingency table.
Conclusion:
For department A:
Test statistic: 17.25; Critical value: 6.635.
For department B:
Test statistic: 0.25; Critical value: 6.635.
For department C:
Test statistic: 0.75; Critical value: 6.635.
For department D:
Test statistic: 0.30; Critical value: 6.635.
For department E:
Test statistic: 1.00; Critical value: 6.635.
For department F:
Test statistic: 0.39; Critical value: 6.635.
In departmentA, 82.4% of the women were accepted, but only 62.1% of themen were accepted.
Want to see more full solutions like this?
Chapter 12 Solutions
Connect Hosted by ALEKS Online Access for Elementary Statistics
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- Prove sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forwardLet G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forwardWe consider a one-period market with the following properties: the current stock priceis S0 = 4. At time T = 1 year, the stock has either moved up to S1 = 8 (with probability0.7) or down towards S1 = 2 (with probability 0.3). We consider a call option on thisstock with maturity T = 1 and strike price K = 5. The interest rate on the money marketis 25% yearly.(a) Find the replicating portfolio (φ, ψ) corresponding to this call option.(b) Find the risk-neutral (no-arbitrage) price of this call option.(c) We now consider a put option with maturity T = 1 and strike price K = 3 onthe same market. Find the risk-neutral price of this put option. Reminder: A putoption gives you the right to sell the stock for the strike price K.1(d) An investor with initial capital X0 = 0 wants to invest on this market. He buysα shares of the stock (or sells them if α is negative) and buys β call options (orsells them is β is negative). He invests the cash balance on the money market (orborrows if the amount is…arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337111348/9781337111348_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)