
To test: the null hypothesis and show that it is rejected at the

Explanation of Solution
Given information :
Concept Involved:
In order to decide whether the presumed hypothesis for data sample stands accurate for the entire population or not we use the hypothesis testing.
The critical value from Table A.4, using degrees of freedom of
The values of two qualitative variables are connected and denoted in a contingency table.
This table consists of rows and column. The variables in each row and each column of the table represent a category. The number of rows of contingency table is represented by letter ‘r’ and number of column of contingency table is represented by letter ‘c’.
The formula to find the number of degree of freedom of contingency table is
Calculation:
For department A:
Department A | |||
Gender | Accept | Reject | Total |
Male | 512 | 313 | 825 |
Female | 89 | 19 | 108 |
Total | 601 | 332 | 933 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department A The row total is 825, the column total is 601, and the grand total is 933. | |
Number of male applicants rejectedin department A The row total is 825, the column total is 332, and the grand total is 933. | |
Number of female applicantsaccepted in department A The row total is 108, the column total is 601, and the grand total is 933. | |
Number of female applicantsrejected in department A The row total is 108, the column total is 332, and the grand total is 933. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department A The observed frequency is 512 and expected frequency is 531.43 | |
Number of male applicants rejectedin department A The observed frequency is 313 and expected frequency is 293.57 | |
Number of female applicantsaccepted in department A The observed frequency is 89 and expected frequency is 69.57 | |
Number of female applicantsrejected in department A The observed frequency is 19 and expected frequency is 38.43 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department A, % of male accepted =
For department B:
Department B | |||
Gender | Accept | Reject | Total |
Male | 353 | 207 | 560 |
Female | 17 | 8 | 25 |
Total | 370 | 215 | 585 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department B The row total is 560, the column total is 370, and the grand total is 585. | |
Number of male applicants rejectedin department B The row total is 560, the column total is 215, and the grand total is 585. | |
Number of female applicantsaccepted in department B The row total is 25, the column total is 370, and the grand total is 585. | |
Number of female applicantsrejected in department B The row total is 25, the column total is 215, and the grand total is 585. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department B The observed frequency is 353 and expected frequency is 354.19 | |
Number of male applicants rejectedin department B The observed frequency is 207 and expected frequency is 205.81 | |
Number of female applicantsaccepted in department B The observed frequency is 17 and expected frequency is 15.81 | |
Number of female applicantsrejected in department B The observed frequency is 8 and expected frequency is 9.19 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department B, % of male accepted =
For department C:
Department C | |||
Gender | Accept | Reject | Total |
Male | 120 | 205 | 325 |
Female | 202 | 391 | 593 |
Total | 322 | 596 | 918 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department C The row total is 325, the column total is 322, and the grand total is 918. | |
Number of male applicants rejectedin department C The row total is 325, the column total is 596, and the grand total is918. | |
Number of female applicantsaccepted in department C The row total is 593, the column total is 322, and the grand total is 918. | |
Number of female applicantsrejected in department C The row total is 593, the column total is 596, and the grand total is 918. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department C The observed frequency is 120 and expected frequency is 114 | |
Number of male applicants rejectedin department C The observed frequency is 205 and expected frequency is 211 | |
Number of female applicantsaccepted in department C The observed frequency is 202 and expected frequency is 208 | |
Number of female applicantsrejected in department C The observed frequency is 391 and expected frequency is 385 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department C, % of male accepted =
For department D:
Department D | |||
Gender | Accept | Reject | Total |
Male | 138 | 279 | 417 |
Female | 131 | 244 | 375 |
Total | 269 | 523 | 792 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department D The row total is 417, the column total is 269, and the grand total is 792. | |
Number of male applicants rejectedin department D The row total is 417, the column total is 523, and the grand total is792. | |
Number of female applicantsaccepted in department D The row total is 375, the column total is 269, and the grand total is 792. | |
Number of female applicantsrejected in department D The row total is 375, the column total is 523, and the grand total is 792. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department D The observed frequency is 138 and expected frequency is 141.63 | |
Number of male applicants rejectedin department D The observed frequency is 279 and expected frequency is 275.37 | |
Number of female applicantsaccepted in department D The observed frequency is 131 and expected frequency is 127.37 | |
Number of female applicantsrejected in department D The observed frequency is 244 and expected frequency is 247.63 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department D, % of male accepted =
For department E:
Department E | |||
Gender | Accept | Reject | Total |
Male | 53 | 138 | 191 |
Female | 94 | 299 | 393 |
Total | 147 | 437 | 584 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department E The row total is 191, the column total is 147, and the grand total is 584. | |
Number of male applicants rejectedin department E The row total is 191, the column total is 437, and the grand total is584. | |
Number of female applicantsaccepted in department E The row total is 393, the column total is 147, and the grand total is 584. | |
Number of female applicantsrejected in department E The row total is 393, the column total is 437, and the grand total is 584. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department E The observed frequency is 53 and expected frequency is 48.08 | |
Number of male applicants rejectedin department E The observed frequency is 138 and expected frequency is 142.92 | |
Number of female applicantsaccepted in department E The observed frequency is 94 and expected frequency is 98.92 | |
Number of female applicantsrejected in department E The observed frequency is 299 and expected frequency is 294.08 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department E, % of male accepted =
For department F:
Department F | |||
Gender | Accept | Reject | Total |
Male | 22 | 351 | 373 |
Female | 24 | 317 | 341 |
Total | 46 | 668 | 714 |
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicants acceptedin department F The row total is 373, the column total is 46, and the grand total is 714. | |
Number of male applicants rejectedin department F The row total is 373, the column total is 668, and the grand total is714. | |
Number of female applicantsaccepted in department F The row total is 341, the column total is 46, and the grand total is 714. | |
Number of female applicantsrejected in department F The row total is 341, the column total is 668, and the grand total is 714. |
Finding the value of the chi-square corresponding to: | |
Number of male applicants acceptedin department F The observed frequency is 22 and expected frequency is 24.03 | |
Number of male applicants rejectedin department F The observed frequency is 351 and expected frequency is 348.97 | |
Number of female applicantsaccepted in department F The observed frequency is 24 and expected frequency is 21.97 | |
Number of female applicantsrejected in department F The observed frequency is 317 and expected frequency is 319.03 |
To compute the test statistics, we use the observed frequencies and expected frequency:
In department E, % of male accepted =
Here r represents the number of rows and c represents the number of columns.
For all the contingency table
Degrees of freedom | Table A.4 Critical Values for the chi-square Distribution | |||||||||
0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
1 | 0.000 | 0.000 | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
The critical value is same for all the contingency table.
Conclusion:
For department A:
Test statistic: 17.25; Critical value: 6.635.
For department B:
Test statistic: 0.25; Critical value: 6.635.
For department C:
Test statistic: 0.75; Critical value: 6.635.
For department D:
Test statistic: 0.30; Critical value: 6.635.
For department E:
Test statistic: 1.00; Critical value: 6.635.
For department F:
Test statistic: 0.39; Critical value: 6.635.
In departmentA, 82.4% of the women were accepted, but only 62.1% of themen were accepted.
Want to see more full solutions like this?
Chapter 12 Solutions
Connect Hosted by ALEKS Access Card or Elementary Statistics
- You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for generating random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o…arrow_forwardCourse Home ✓ Do Homework - Practice Ques ✓ My Uploads | bartleby + mylab.pearson.com/Student/PlayerHomework.aspx?homeworkId=688589738&questionId=5&flushed=false&cid=8110079¢erwin=yes Online SP 2025 STA 2023-009 Yin = Homework: Practice Questions Exam 3 Question list * Question 3 * Question 4 ○ Question 5 K Concluir atualização: Ava Pearl 04/02/25 9:28 AM HW Score: 71.11%, 12.09 of 17 points ○ Points: 0 of 1 Save Listed in the accompanying table are weights (kg) of randomly selected U.S. Army male personnel measured in 1988 (from "ANSUR I 1988") and different weights (kg) of randomly selected U.S. Army male personnel measured in 2012 (from "ANSUR II 2012"). Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Complete parts (a) and (b). Click the icon to view the ANSUR data. a. Use a 0.05 significance level to test the claim that the mean weight of the 1988…arrow_forwardsolving problem 1arrow_forward
- select bmw stock. you can assume the price of the stockarrow_forwardThis problem is based on the fundamental option pricing formula for the continuous-time model developed in class, namely the value at time 0 of an option with maturity T and payoff F is given by: We consider the two options below: Fo= -rT = e Eq[F]. 1 A. An option with which you must buy a share of stock at expiration T = 1 for strike price K = So. B. An option with which you must buy a share of stock at expiration T = 1 for strike price K given by T K = T St dt. (Note that both options can have negative payoffs.) We use the continuous-time Black- Scholes model to price these options. Assume that the interest rate on the money market is r. (a) Using the fundamental option pricing formula, find the price of option A. (Hint: use the martingale properties developed in the lectures for the stock price process in order to calculate the expectations.) (b) Using the fundamental option pricing formula, find the price of option B. (c) Assuming the interest rate is very small (r ~0), use Taylor…arrow_forwardDiscuss and explain in the picturearrow_forward
- Bob and Teresa each collect their own samples to test the same hypothesis. Bob’s p-value turns out to be 0.05, and Teresa’s turns out to be 0.01. Why don’t Bob and Teresa get the same p-values? Who has stronger evidence against the null hypothesis: Bob or Teresa?arrow_forwardReview a classmate's Main Post. 1. State if you agree or disagree with the choices made for additional analysis that can be done beyond the frequency table. 2. Choose a measure of central tendency (mean, median, mode) that you would like to compute with the data beyond the frequency table. Complete either a or b below. a. Explain how that analysis can help you understand the data better. b. If you are currently unable to do that analysis, what do you think you could do to make it possible? If you do not think you can do anything, explain why it is not possible.arrow_forward0|0|0|0 - Consider the time series X₁ and Y₁ = (I – B)² (I – B³)Xt. What transformations were performed on Xt to obtain Yt? seasonal difference of order 2 simple difference of order 5 seasonal difference of order 1 seasonal difference of order 5 simple difference of order 2arrow_forward
- Calculate the 90% confidence interval for the population mean difference using the data in the attached image. I need to see where I went wrong.arrow_forwardMicrosoft Excel snapshot for random sampling: Also note the formula used for the last column 02 x✓ fx =INDEX(5852:58551, RANK(C2, $C$2:$C$51)) A B 1 No. States 2 1 ALABAMA Rand No. 0.925957526 3 2 ALASKA 0.372999976 4 3 ARIZONA 0.941323044 5 4 ARKANSAS 0.071266381 Random Sample CALIFORNIA NORTH CAROLINA ARKANSAS WASHINGTON G7 Microsoft Excel snapshot for systematic sampling: xfx INDEX(SD52:50551, F7) A B E F G 1 No. States Rand No. Random Sample population 50 2 1 ALABAMA 0.5296685 NEW HAMPSHIRE sample 10 3 2 ALASKA 0.4493186 OKLAHOMA k 5 4 3 ARIZONA 0.707914 KANSAS 5 4 ARKANSAS 0.4831379 NORTH DAKOTA 6 5 CALIFORNIA 0.7277162 INDIANA Random Sample Sample Name 7 6 COLORADO 0.5865002 MISSISSIPPI 8 7:ONNECTICU 0.7640596 ILLINOIS 9 8 DELAWARE 0.5783029 MISSOURI 525 10 15 INDIANA MARYLAND COLORADOarrow_forwardSuppose the Internal Revenue Service reported that the mean tax refund for the year 2022 was $3401. Assume the standard deviation is $82.5 and that the amounts refunded follow a normal probability distribution. Solve the following three parts? (For the answer to question 14, 15, and 16, start with making a bell curve. Identify on the bell curve where is mean, X, and area(s) to be determined. 1.What percent of the refunds are more than $3,500? 2. What percent of the refunds are more than $3500 but less than $3579? 3. What percent of the refunds are more than $3325 but less than $3579?arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL



