
To test: the null hypothesis and show that it is rejected at the

Explanation of Solution
Given information :
Department | A | B | C | D | E | F | Total |
Male | 825 | 560 | 325 | 417 | 191 | 373 | 2691 |
Female | 108 | 25 | 593 | 375 | 393 | 341 | 1835 |
Total | 933 | 585 | 918 | 792 | 584 | 714 | 4526 |
Concept Involved:
In order to decide whether the presumed hypothesis for data sample stands accurate for the entire population or not we use the hypothesis testing.
The value of test statistics and the critical value identified from the table help us to decide whether to reject or do not reject null hypothesis.
The critical value from Table A.4, using degrees of freedom of
If
The values of two qualitative variables are connected and denoted in a contingency table.
This table consists of rows and column. The variables in each row and each column of the table represent a category.
The number of rows of contingency table is represented by letter ‘r’ and number of column of contingency table is represented by letter ‘c’.
The formula to find the number of degree of freedom of contingency table is
Calculation:
Finding the expected frequency for the cell corresponding to: | The expected frequency |
Number of male applicantsin department A The row total is 2691, the column total is 933, and the grand total is 4526. | |
Number of male applicantsin department B The row total is 2691, the column total is 585, and the grand total is 4526. | |
Number of male applicantsin department C The row total is 2691, the column total is 918, and the grand total is 4526. | |
Number of male applicantsin department D The row total is 2691, the column total is 792, and the grand total is 4526. | |
Number of male applicantsin department E The row total is 2691, the column total is 584, and the grand total is 4526. | |
Number of male applicantsin department F The row total is 2691, the column total is 714, and the grand total is 4526. | |
Number of female applicantsin department A The row total is 1835, the column total is 933, and the grand total is 4526. | |
Number of female applicantsin department B The row total is 1835, the column total is 585, and the grand total is 4526. | |
Number of female applicantsin department C The row total is 1835, the column total is 918, and the grand total is 4526. | |
Number of female applicantsin department D The row total is 1835, the column total is 792, and the grand total is 4526. | |
Number of female applicantsin department E The row total is 1835, the column total is 584, and the grand total is 4526. | |
Number of female applicantsin department F The row total is 1835, the column total is 714, and the grand total is 4526. |
All the expected frequencies are at least 5. From the results of previous part we have the below table:
Finding the value of the chi-square corresponding to: | |
Number of male applicantsin department A The observed frequency is 825 and expected frequency is 554.73 | |
Number of male applicantsin department B The observed frequency is 560 and expected frequency is 347.82 | |
Number of male applicantsin department C The observed frequency is 325 and expected frequency is 545.81 | |
Number of male applicantsin department D The observed frequency is 417 and expected frequency is 470.90 | |
Number of male applicantsin department E The observed frequency is 191 and expected frequency is 347.23 | |
Number of male applicantsin department F The observed frequency is 373 and expected frequency is 424.52 | |
Number of female applicantsin department A The observed frequency is 108 and expected frequency is 378.27 | |
Number of female applicantsin department B The observed frequency is 25 and expected frequency is 237.18 | |
Number of female applicantsin department C The observed frequency is 593 and expected frequency is 372.19 | |
Number of female applicantsin department D The observed frequency is 375 and expected frequency is 321.10 | |
Number of female applicantsin department E The observed frequency is 393 and expected frequency is 236.77 | |
Number of female applicantsin department F The observed frequency is 341 and expected frequency is 289.48 |
To compute the test statistics, we use the observed frequencies and expected frequency:
Here r represents the number of rows and c represents the number of columns.
Given
Degrees of freedom | Table A.4 Critical Values for the chi-square Distribution | |||||||||
0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
1 | 0.000 | 0.000 | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
Conclusion:
Test statistic: 1068.37; Critical value: 15.086.
Want to see more full solutions like this?
Chapter 12 Solutions
Connect Hosted by ALEKS Access Card or Elementary Statistics
- Given your fitted regression line, what would be the residual for snake #5 (10 C)?arrow_forwardCalculate the 95% confidence interval around your estimate of r using Fisher’s z-transformation. In your final answer, make sure to back-transform to the original units.arrow_forwardCalculate Pearson’s correlation coefficient (r) between temperature and heart rate.arrow_forward
- A researcher wishes to estimate, with 90% confidence, the population proportion of adults who support labeling legislation for genetically modified organisms (GMOs). Her estimate must be accurate within 4% of the true proportion. (a) No preliminary estimate is available. Find the minimum sample size needed. (b) Find the minimum sample size needed, using a prior study that found that 65% of the respondents said they support labeling legislation for GMOs. (c) Compare the results from parts (a) and (b). ... (a) What is the minimum sample size needed assuming that no prior information is available? n = (Round up to the nearest whole number as needed.)arrow_forwardThe table available below shows the costs per mile (in cents) for a sample of automobiles. At a = 0.05, can you conclude that at least one mean cost per mile is different from the others? Click on the icon to view the data table. Let Hss, HMS, HLS, Hsuv and Hмy represent the mean costs per mile for small sedans, medium sedans, large sedans, SUV 4WDs, and minivans respectively. What are the hypotheses for this test? OA. Ho: Not all the means are equal. Ha Hss HMS HLS HSUV HMV B. Ho Hss HMS HLS HSUV = μMV Ha: Hss *HMS *HLS*HSUV * HMV C. Ho Hss HMS HLS HSUV =μMV = = H: Not all the means are equal. D. Ho Hss HMS HLS HSUV HMV Ha Hss HMS HLS =HSUV = HMVarrow_forwardQuestion: A company launches two different marketing campaigns to promote the same product in two different regions. After one month, the company collects the sales data (in units sold) from both regions to compare the effectiveness of the campaigns. The company wants to determine whether there is a significant difference in the mean sales between the two regions. Perform a two sample T-test You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. (2 points = 0.5 x 4 Answers) Each of these is worth 0.5 points. However, showing the calculation is must. If calculation is missing, the whole answer won't get any credit.arrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning




