At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C 2 H 5 OH ( g ) → CH 3 CHO ( g ) + H 2 ( g ) The pressure of C 2 H 5 OH was measured as a function of time and the following data were obtained: Time(s) P C 2 H 5 OH ( torr ) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C 2 H 5 OH after 900. s from the start of the reaction. ( Hint: To determine the order of the reaction with respect to C 2 H 5 OH, compare how the pressure of C 2 H 5 OH decreases with each time listing.)
At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C 2 H 5 OH ( g ) → CH 3 CHO ( g ) + H 2 ( g ) The pressure of C 2 H 5 OH was measured as a function of time and the following data were obtained: Time(s) P C 2 H 5 OH ( torr ) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C 2 H 5 OH after 900. s from the start of the reaction. ( Hint: To determine the order of the reaction with respect to C 2 H 5 OH, compare how the pressure of C 2 H 5 OH decreases with each time listing.)
Solution Summary: The author explains how the differential rate law provides the rate of a reaction at specific reaction concentrations.
At 500 K in the presence of a copper surface, ethanol decomposes according to the equation
C
2
H
5
OH
(
g
)
→
CH
3
CHO
(
g
)
+
H
2
(
g
)
The pressure of C2H5OH was measured as a function of time and the following data were obtained:
Time(s)
P
C
2
H
5
OH
(
torr
)
0
250.
100.
237
200.
224
300.
211
400.
198
500.
185
Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)
Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling
point, choose 2 next to the substance with the next highest boiling point, and so on.
substance
C
D
chemical symbol,
chemical formula
or Lewis structure.
CH,-N-CH,
CH,
H
H 10: H
C-C-H
H H H
Cale
H 10:
H-C-C-N-CH,
Bri
CH,
boiling point
(C)
Сен
(C) B
(Choose
Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!
Q1: Answer the questions for the reaction below:
..!! Br
OH
a) Predict the product(s) of the reaction.
b) Is the substrate optically active? Are the product(s) optically active as a mix?
c) Draw the curved arrow mechanism for the reaction.
d) What happens to the SN1 reaction rate in each of these instances:
1. Change the substrate to
Br
"CI
2. Change the substrate to
3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF
4. Increase the substrate concentration by 3-fold.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.