(a)
The semi-major axes of the orbits of the comets.
(a)
Answer to Problem 40QP
The semi-major axes of the comet Encke is
Explanation of Solution
The time period of the Earth around the sun is
The semi-major axis of a celestial body around the planet is almost equal to the average orbital distance of the body given by the Kepler’s law.
Write the expression for the Kepler’s third law for the comparison between the time period and orbital distance.
Here,
Conclusion:
For comet Encke:
Substitute
For comet Halley:
Substitute
For comet Hale-Bopp:
Substitute
Thus, the semi-major axes of the comet Encke is
(b)
The minimum and maximum distance of the comets Halley and Hale-Bopp from the sun.
(b)
Answer to Problem 40QP
The minimum and maximum distance of the comet Halley from the sun is
Explanation of Solution
The maximum and minimum distances reached by the comet from the sun in their orbits are termed as the Aphelion and Perihelion respectively.
Write the expression for the perihelion distance of the body in its orbit.
Here,
Write the expression for the aphelion distance of the body in its orbit.
Here,
Conclusion:
For Comet Halley:
Substitute
Substitute
For Comet Hale-Bopp:
Substitute
Substitute
Thus, the minimum and maximum distance of the comet Halley from the sun is
(c)
The region of origin of the comets Encke, Halley and Hale-Bopp in the solar system.
(c)
Answer to Problem 40QP
The Encke and Halley’s Comet are considered to be originated in the Kuiper belt whereas the Hale-Bopp comet is considered to be originated in Oort cloud region.
Explanation of Solution
The orbital time period of the comet suggests the region of origin of the Comet in the solar system. The comets that have a smaller time period are termed as the Short period comet and the one which have large time period are the long period comet.
The Encke comet has a very small time period of
The Halley comet is a short period comet with the time period of
Conclusion:
Thus, the Encke and Halley’s Comet are considered to be originated in the Kuiper belt whereas the Hale-Bopp comet is considered to be originated in Oort cloud region.
(d)
The comet which is the most and least pristine of the three.
(d)
Answer to Problem 40QP
The comet Encke is the least pristine and the comet Hale-Bopp is most pristine.
Explanation of Solution
As the comet comes close to the sun, the comet action takes place due to the sublimation of the ice and gases on the comet. This leads to the wear out of the material of the comet. The more the comet comes near the sun; more it loses its material.
The comet Encke is considered to be the least pristine as it has a very short time period and it encounters with the sun most frequently whereas the comet Hale-Bopp is considered to be the most pristine as it comes near the sun after a very long period.
Conclusion:
Thus, the comet Encke is the least pristine and the comet Hale-Bopp is most pristine.
Want to see more full solutions like this?
Chapter 12 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
- The eccentricity of an asteroid's orbit is 0.0331, and the semimajor axis is 1.61 x 1011 m. The Sun's center is at one focus of the asteroid's orbit. (a) How far from this focus is the other focus in meters? (b) What is the ratio of this distance to the solar radius, 6.96 x 108 m? (a) Number Units (b) Number Unitsarrow_forwardThe chart shows the length of time for each planet, in Earth days, to make one complete revolution around the Sun. Orbital Period of Planets iY the Solar System Orbital Period (Earth days) 88 225 365 687 4333 10 759 30 685 60 189 Planet Mercury Venus Earth Mars Jupiter Satum Uranus Neptune Source: NASA Use the data table above to compare the length of a year on Mars and Neptune. (HS-ESS1-4) a. One year on Neptune is almost 100 times longer than a year on Mars. b. One year on these two planets is nearly equal. c. One year on Mars is almost 100 times longer than a year on Neptune. d. One year these two planets is roughly equal to a year on Earth. Use the data table above to determine which of the following statements is TRUE. (HS-ESS1-4) a. There is no relationship between a planet's distance from the Sun and its length of year. b. The closer a planet is to the Sun, the longer the planet's year. c. One year on all planets is about 365 days long. d. The farther away a planet is from the…arrow_forwardOrbital Radius and orbital period data for the four biggest moons of Jupiter are listed in the table below. The mass of the planet Jupiter is 1.9 × 1027 kg. Jupiter's Moon Period (s) Radius (m) T2/r3 Io 1.53×105 4.2×108 ? Europa 3.07×105 6.7×108 ? Ganymede 6.18×105 1.1×109 ? Callisto 1.44×106 1.9×109 ? What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support?arrow_forward
- An asteroid is observed to be on a superior orbit with a synodic period of 466.6 days. What are the sidereal orbital period and semi-major axis of this asteroid? Choose the option below that most closely matches your answers. Select one: O a. Sidereal period = 1683 days and %3D semi-major = 2.7 AU O b. Sidereal period = 1683 days and semi-major axis = 4.8 AU O c. Sidereal period = 865 days and semi- major axis = 1.8 AU O d. Sidereal period = 426 day and semi- %3D major axis = 2.7 AU O e. Sidereal period = 1727 days and е. semi-major axis = 0.8 AUarrow_forward(to two decimal places): (what is ‘h’?) Eccentricity of earth orbit is 0.0167 µ(sun) = 1.32712E+11 km^3/s^ semimajor axis of Earth orbit = 1.49598E+08 need to figure out what ‘h’ is. a) Calculate the speed of the earth around the sun at aphelion? (29.29 KM/S) b) At perihelion? (30.29 KM/S)arrow_forwardA planet's speed in orbit is given by V = (30 km/s)[(2/r)-(1/a)]0.5 where V is the planet's velocity, r is the distance in AU's from the Sun at that instant, and a is the semimajor axis of its orbit. Calculate the Earth's velocity in its orbit (assume it is circular): What is the velocity of Mars at a distance of 1.41 AU from the Sun? What is the spacecraft's velocity when it is 1 AU from the Sun (after launch from the Earth)? What additional velocity does the launch burn have to give to the spacecraft? (i.e. What is the difference between the Earth's velocity and the velocity the spacecraft needs to have?) How fast will the spacecraft be traveling when it reaches Mars? Does the spacecraft need to gain or lose velocity to go into the same orbit as Mars?arrow_forward
- Until recently, the term "planet" had no clear-cut definition. In August of 2006, leading astronomers established new guidelines and declared that Pluto is no longer a planet. Which of the following is either false or least consistent with the new guidelines? Group of answer choices Pluto is by far the largest known object in the Kuiper belt, while Eris is the largest known object in the asteroid belt. A planet must have cleared the neighborhood around its orbit. Pluto is automatically disqualified from being a planet because its oblong orbit overlaps with Neptune's. A planet must have sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a nearly round shape. Pluto and the asteroid Ceres are both now classified as dwarf planets.arrow_forward+1x cture.com/courses/71876/quizzes/249540/take A Polynomial Operations A comet is cruising through the solar system at a velocity of 50,000 km per hour for four hours. What is the total distance traveled by the comet? Do not enter your units for this problem. Just enter your numerical answer. Make sure to include commas if necessary. 甲 直arrow_forwardAn asteroid orbits the Sun in 4.7 (Earth) Years. What is its average distance from the Sun (in AU)? Give your answer in Astronomical Units to the correct number of significant figures.arrow_forward
- A new planet is discovered orbiting a distant star. Observations have confirmed that the planet has a circular orbit with a radius of 12 AU and takes 117 days to orbit the star. Determine the mass of the star. State your answer with appropriate mks units. [NOTE: AU ..stands.for...astronomical unit". It is the average distance between Earth & the Sun. 1 AU≈ 1.496 x 1011 m.] Enter a number with units. I be quite large and your calculator will display the answer as a power of 10. If, as an example, your answer was 8.54 x 1056, you would type "8.54e56" into the answer box (remember to state your units with your answer).]arrow_forwardI. Directions: Complete the given table by finding the ratio of the planet's time of revolution to its radius. Average Radius of Orbit Times of Planet R3 T2 T?/R3 Revolution Mercury 5.7869 x 1010 7.605 x 106 Venus 1.081 x 1011 1.941 x 107 Earth 1.496 x 1011 3.156 x 107 1. What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support? II. Solve the given problems. Write your solution on the space provided before each number. 1. You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. Find the following: a) Speed b) Period c) Radial Acceleration Given: Unknown: Formula: Solution: Answer: Given: Unknown: Formula: Solution: Answer: Given: Unknown: Formula: Solution: Answer:arrow_forwardA newly discovered planet, Eagal, has two known moons, Dorainn and Bron. The table below gives some of the known information about Dorainn and Bron. Dorainn Bron Mass 1.427 x 1015 kg 1.427 x 1015 kg Radius 6.142 km Orbital Period 1.091 x 105 s Orbital Radius 23,640 km 27,650 km a. Determine the gravitational field strength at the surface of Dorainn. b. Using only the information provided for each moon and proportionality, determine Bron's orbital period. Clearly show or explain all workings. c. Use the data provided for Dorainn to determine the mass of Eagal. d. Determine the orbital speed of Bron.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax