21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 24QP
To determine
The origin of the meteorite which has the radioactive dating of about a billion years.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The iron meteorite that created Barringer Crater (Arizona) was 50 m in diameter. It caused a crater 1.2 km (1200 m) in diameter, that is, 24 times bigger than the impactor. Keeping in mind that the size of the crater depends on many factors, such as the type of rocks present in the area, estimate the approximate size of the impactor that produced Mare Serenitatis.
Explain the light emission by meteorite?
A sample from a meteorite that landed on Earth has been analyzed, and the results shows that out of every 1,000 nuclei of potassium- 40 originally in the meteorite, only 125 are still present, meaning they have no yet decayed. How old is the meteorite (in yr)? (Hint: see the figure below) (Note: The half life of potassium- 40 is 1.3 billion years.)
_______ yr
Chapter 12 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 12.1 - Prob. 12.1CYUCh. 12.2 - Prob. 12.2CYUCh. 12.3 - Prob. 12.3ACYUCh. 12.3 - Prob. 12.3BCYUCh. 12.4 - Prob. 12.4CYUCh. 12.5 - Prob. 12.5CYUCh. 12 - Prob. 1QPCh. 12 - Prob. 2QPCh. 12 - Prob. 3QPCh. 12 - Prob. 4QP
Ch. 12 - Prob. 5QPCh. 12 - Prob. 6QPCh. 12 - Prob. 7QPCh. 12 - Prob. 8QPCh. 12 - Prob. 9QPCh. 12 - Prob. 10QPCh. 12 - Prob. 11QPCh. 12 - Prob. 12QPCh. 12 - Prob. 13QPCh. 12 - Prob. 14QPCh. 12 - Prob. 15QPCh. 12 - Prob. 16QPCh. 12 - Prob. 17QPCh. 12 - Prob. 18QPCh. 12 - Prob. 19QPCh. 12 - Prob. 20QPCh. 12 - Prob. 22QPCh. 12 - Prob. 23QPCh. 12 - Prob. 24QPCh. 12 - Prob. 25QPCh. 12 - Prob. 26QPCh. 12 - Prob. 27QPCh. 12 - Prob. 28QPCh. 12 - Prob. 29QPCh. 12 - Prob. 30QPCh. 12 - Prob. 31QPCh. 12 - Prob. 32QPCh. 12 - Prob. 33QPCh. 12 - Prob. 34QPCh. 12 - Prob. 35QPCh. 12 - Prob. 36QPCh. 12 - Prob. 37QPCh. 12 - Prob. 38QPCh. 12 - Prob. 39QPCh. 12 - Prob. 40QPCh. 12 - Prob. 41QPCh. 12 - Prob. 42QPCh. 12 - Prob. 43QPCh. 12 - Prob. 44QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What does the cosmic ray exposure age tell us about the history of a meteorite?arrow_forwardWhat methods do scientists use to distinguish a meteorite from terrestrial material?arrow_forwardConsider the differentiated meteorites. We think the irons are from the cores, the stony-irons are from the interfaces between mantles and cores, and the stones are from the mantles of their differentiated parent bodies. If these parent bodies were like Earth, what fraction of the meteorites would you expect to consist of irons, stony-irons, and stones? Is this consistent with the observed numbers of each? (Hint: You will need to look up what percent of the volume of Earth is taken up by its core, mantle, and crust.)arrow_forward
- Suppose a new primitive meteorite is discovered (sometime after it falls in a field of soybeans) and analysis reveals that it contains a trace of amino acids, all of which show the same rotational symmetry (unlike the Murchison meteorite). What might you conclude from this finding?arrow_forwardWhich meteorites are the most useful for defining the age of the solar system? Why?arrow_forwardWhat is the difference between a meteor and a meteorite?arrow_forward
- The Tunguska asteroid is estimated to have had a diameter of 50 m, and to have produced an explosion equivalent to 10 megatons of TNT (1 megaton = 4.2 x 1015 joules). Assume that the asteroid was a sphere with density 2 g/cm3. Using the kinetic energy formula K = ½ mv2, where m is the mass and v is the speed, to estimate the speed of the asteroid. Assume that all kinetic energy is converted into the energy of the explosion. Give your answer in km/s with one significant figure.arrow_forwardHow many impacts would you expect to strike a 100m2 region in one hour during Earth’s formation, assuming that Earth grew to its present size in 10 million years from particles averaging 100 grams each? (Hint: Assume that Earth had its current radius of 6378km.) (Notes: The surface area of a sphere is 4pir2 ; 1yr=3.2x107 .) a. About 1300. b. About 13 . c. About 13,000. d. About 130arrow_forwardA lot of asteroid and comet dust collides with Earth's atmosphere everyday. Assume that 500 tons of mass is added to Earth daily from the millions of meteors that enter our atmosphere. Estimate the time it would take for the Earth's mass to increase 0.2% with this impact rate. Is this mass accumulation significant to Earth as a planet.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY