(A) Graph x = 5 and y = − 3 simultaneously in the same rectangular coordinate system . (B) Write the equations of the vertical and horizontal lines that pass through the point − 8 , 2 .
(A) Graph x = 5 and y = − 3 simultaneously in the same rectangular coordinate system . (B) Write the equations of the vertical and horizontal lines that pass through the point − 8 , 2 .
Solution Summary: The author illustrates how the linear equation x=5 and y=-3 are drawn and intersects at the point (5,3).
(A) Graph
x
=
5
and
y
=
−
3
simultaneously in the same rectangular coordinate system.
(B) Write the equations of the vertical and horizontal lines that pass through the point
−
8
,
2
.
System that uses coordinates to uniquely determine the position of points. The most common coordinate system is the Cartesian system, where points are given by distance along a horizontal x-axis and vertical y-axis from the origin. A polar coordinate system locates a point by its direction relative to a reference direction and its distance from a given point. In three dimensions, it leads to cylindrical and spherical coordinates.
= 1. Show
(a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g":
that the group algebra KG has a presentation KG = K(X)/(X” — 1).
(b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module
with vector space K2 and where the action of X is given by the matrix
Compute End(V) in the cases
(i) x = p,
(ii) xμl.
(67) ·
(c) If M and N are submodules of a module L, prove that there is an isomorphism
M/MON (M+N)/N.
(The Second Isomorphism Theorem for modules.)
You may assume that MON is a submodule of M, M + N is a submodule of L
and the First Isomorphism Theorem for modules.
(a) Define the notion of an ideal I in an algebra A. Define the product on the quotient
algebra A/I, and show that it is well-defined.
(b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra
of A and that SnI is an ideal in S.
(c) Let A be the subset of M3 (K) given by matrices of the form
a b
0 a 0
00 d
Show that A is a subalgebra of M3(K).
Ꮖ
Compute the ideal I of A generated by the element and show that A/I K as
algebras, where
0 1 0
x =
0 0 0
001
Chapter 1 Solutions
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences Plus NEW MyLab Math with Pearson eText -- Access Card Package (13th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.