Calories and Exercise The chart on page 17 shows the calories burned per hour for an average person who weighs 150 lb.
a. Estimate the number of calories Phyllis, who weighs 150 lb, burns in a week if she lifts weight for 2 hours each week and jogs at 5 miles per hour for 4 hours each week.
b. Estimate the difference in the calories Phyllis will burn each week if she runs for 4 hours at 8 miles per hour rather than walking for 4 hours at 4 miles per hour.
c. Assume Phyllis jogs at 5 miles per hour for 3 hours and bicycles at 13 miles per hour for 3 hours each week Estimate the number of calories she will burn in a year from these exercises.
Activity | Calories* per Hour | |
Running, 8 mph | 920 | |
Bicycling, 13 mph | 545 | |
Jogging, 5 mph | 545 | |
Air-walking | 480 | |
Stair-climbing | 410 | |
Weight-lifting | 410 | |
Walking, 4 mph | 330 | |
Casual bike riding | 300 | |
*For a 150-lb person. |
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
A Survey of Mathematics with Applications plus MyLab Math Student Access Card -- Access Code Card Package (10th Edition)
- How parents can assess children's learning at home and how the task can be differentiated. Must provide two examples of differentiation tasks. Mathematics in Practice Assignment 2arrow_forwardWhen ever one Point sets in X are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then xe A (xx, Tx) is homeomorphic to sub space of the Product space (TXA, prod). KeA The Bin Projection map 18: Tx XP is continuous and open but heed hot to be closed. Acale ctioneA} of continuos function ona topogical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set inx from a base for top on X-arrow_forwardWhy are Bartleby experts giving only chatgpt answers?? Why are you wasting our Money and time ?arrow_forward
- 9. (a) Use pseudocode to describe an algo- rithm for determining the value of a game tree when both players follow a minmax strategy. (b) Suppose that T₁ and T2 are spanning trees of a simple graph G. Moreover, suppose that ₁ is an edge in T₁ that is not in T2. Show that there is an edge 2 in T2 that is not in T₁ such that T₁ remains a spanning tree if ₁ is removed from it and 2 is added to it, and T2 remains a spanning tree if 2 is removed from it and e₁ is added to it. (c) Show that a degree-constrained spanning tree of a simple graph in which each vertex has degree not exceeding 2 2 consists of a single Hamiltonian path in the graph.arrow_forwardChatgpt give wrong answer No chatgpt pls will upvotearrow_forward@when ever one Point sets in x are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then VaeA (xx, Tx) is homeomorphic to sul space of the Product space (Txa, prod). KeA © The Bin Projection map B: Tx XP is continuous and open but heed hot to be closed. A collection (SEA) of continuos function oha topolgical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set in Xx from a base for top on x.arrow_forward
- Simply:(p/(x-a))-(p/(x+a))arrow_forwardMake M the subject: P=2R(M/√M-R)arrow_forwardExercice 2: Soit & l'ensemble des nombres réels. Partie A Soit g la fonction définie et dérivable sur R telle que, pour tout réel x. g(x) = - 2x ^ 3 + x ^ 2 - 1 1. a) Étudier les variations de la fonction g b) Déterminer les limites de la fonction gen -oo et en +00. 2. Démontrer que l'équation g(x) = 0 admet une unique solution dans R, notée a, et que a appartient à | - 1 ;0|. 3. En déduire le signe de g sur R. Partie B Soit ƒ la fonction définie et dérivable sur R telle que, pour tout réel s. f(x) = (1 + x + x ^ 2 + x ^ 3) * e ^ (- 2x + 1) On note f la fonction dérivée de la fonction ƒ sur R. 1. Démontrer que lim x -> ∞ f(x) = - ∞ 2. a) Démontrer que, pour tout x > 1 1 < x < x ^ 2 < x ^ 3 b) En déduire que, pour x > 1 0 < f(x) < 4x ^ 3 * e ^ (- 2x + 1) c) On admet que, pour tout entier naturel n. lim x -> ∞ x ^ n * e ^ (- x) = 0 Vérifier que, pour tout réel x, 4x ^ 3 * e ^ (- 2x + 1) = e/2 * (2x) ^ 3 * e ^ (-2x) puis montrer que: lim x -> ∞ 4x ^ 3 * e…arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University