Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 35P

(a)

To determine

The maximum speed of the bob.

(a)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum speed of the bob is 0.820m/s .

Explanation of Solution

Section 1:

To determine: The amplitude of the motion.

Answer: The maximum speed of the amplitude of the motion is 0.262m .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate amplitude is,

A=Lθ

  • L is the length of pendulum.
  • θ is the displaced angle.

Substitute 1.00m for L and 15.0° for θ in above equation to find A .

A=(1.00m)(15.0°(π180°))=0.262m

Section 2:

To determine: The angular frequency of the motion.

Answer: The angular frequency of the motion is 3.13rad/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate angular frequency is,

ω=gL

  • g is the acceleration due to gravity.

Substitute 1.00m for L and 9.8m/s2 for g in above equation to find ω .

ω=9.8m/s21.00m=3.13rad/s

Section 3:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.820m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum speed is,

vmax=Aω

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find vmax .

vmax=(0.262m)(3.13rad/s)=0.820m/s

Conclusion:

Therefore, the maximum speed of the bob is 0.820m/s .

(b)

To determine

The maximum acceleration of the bob.

(b)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum acceleration of the bob is 2.57rad/s2 .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum acceleration of the bob is,

amax=Aω2

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find amax .

amax=(0.262 m)(3.13rad/s)2=2.57rad/s2

Conclusion:

Therefore, the maximum acceleration of the bob is 2.57rad/s2 .

(c)

To determine

The maximum restoring force of the bob.

(c)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum restoring force of the bob is 0.641N .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum restoring force of the bob is,

F=mamax

  • m is the mass of the pendulum.

Substitute Aω2 for amax in above equation.

F=mAω2

Substitute 0.250kg for m , 0.262 m for A and 3.13rad/s for ω in above equation to find F .

F=(0.250kg)(0.262m)(3.13rad/s)2=0.641N

Conclusion:

Therefore, the maximum restoring force of the bob is 0.641N .

(d)

To determine

The maximum speed, angular acceleration and restoring force of the bob using the model introduced earlier chapter.

(d)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

Explanation of Solution

Section 1:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.817m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

Consider the figure given below.

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card), Chapter 12, Problem 35P

In triangle ABC ,

cosθ=ACABAC=ABcosθ=Lcosθ

The height of the bob is,

h=ADAC=LLcosθ=L(1cosθ)

The law of conservation of energy is,

mgh=12mvmax2

Substitute L(1cosθ) for h in above expression.

mgL(1cosθ)=12mvmax2gL(1cosθ)=12vmax2

Substitute 15.0° for θ , 1.00m for L and 9.8m/s2 for g in above equation to find vmax .

(9.8m/s2)(1.00m)(1cos(15.0°))=12vmax2vmax2=2(0.333)m2/s2vmax=2(0.333)m2/s2=0.817m/s

Section 2:

To determine: The angular acceleration of the bob.

Answer: The angular acceleration of the bob is 2.54rad/s2 .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula for the moment of inertia of the pendulum is,

I=mL2

The equation for the conservation of energy is,

Iα=mgLsinθ

  • α is the angular acceleration.

Substitute mL2 for I in above expression and rearrange for α .

mL2α=mgLsinθα=mgLsinθmL2=gsinθL

Substitute 9.8m/s2 for g , 1.00m for L and 15.0° for θ in above equation to find α .

α=(9.8m/s2)sin(15.0°)1.00m=2.54rad/s2

Section 3:

To determine: The restoring force of the bob.

Answer: The restoring force of the bob is 0.634N .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The force is maximum, when the angle is maximum.

The restoring force is calculated as,

F=mgsinθ

Substitute 15.0° for θ , 0.250kg for m and 9.8m/s2 for g in above equation to find F .

F=(0.250kg)(9.8m/s2)sin(15.0°)=0.634N

Conclusion:

Therefore, the maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

(e)

To determine

To compare: The answers of part (a), part (c) and part (d).

(e)

Expert Solution
Check Mark

Explanation of Solution

Introduction: The restoring force is defined as the force or torque that tends to restore a system to equilibrium after displacement.

The answers are closest but not exactly the same. The angular amplitude of 15.0° is not small, so the simple harmonic oscillation is not accurate. The answers computed from conservation of the energy and from Newton’s second law are more accurate.

Conclusion:

Therefore, the answers are closest but not exactly the same.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg N
••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.

Chapter 12 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning