Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 22P

(a)

To determine

To describe: The appropriate analysis model of jumper’s motion for the free fall part.

(a)

Expert Solution
Check Mark

Explanation of Solution

A free falling object is an object that is falling under the sole influence of gravity.

Any object that is being acted upon only by the force of gravity is said to be in a state of free fall. The free fall phase follows the parabolic behavior. Since the only gravity acted on the free fall, the acceleration is constant.

Conclusion:

Therefore, the jumper’s motion has the constant acceleration.

(b)

To determine

The time required for free fall.

(b)

Expert Solution
Check Mark

Answer to Problem 22P

The time required for free fall is 1.49s .

Explanation of Solution

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The equation for the kinematic is,

yf=yi+vyt+12ayt2

yf is the free fall height.

t is the time.

yi is the initial height.

vy is the velocity.

ay is the acceleration.

Substitute 11.0m for yf , 0 for yi , 0 for vy and 9.8m/s2 for ay in above equation to find t .

11.0m=0+(0)t+12(9.8m/s2)t2=12(9.8m/s2)t2t=(2×11.0m)9.8m/s2=1.49s

Conclusion:

Therefore, the time required for free fall is 1.49s .

(c)

To determine

To describe: Weather the system of the bungee jumper, the spring and the earth is isolated or non-isolated for simple harmonic oscillation.

(c)

Expert Solution
Check Mark

Explanation of Solution

When a system is isolated, it means that it is separated from its environment in such a way that no energy flows on or out of the system. The non-isolated system interacts with its environment and exchanges the energy.

The energy of the system of the bungee jumper, the spring and the earth is exchanged only with each other not outside from the system. Since the earth and spring act on the jumper, the system is isolated.

Conclusion:

Therefore, the system the bungee jumper, the spring and the earth is isolated.

(d)

To determine

The spring constant of the bungee cord.

(d)

Expert Solution
Check Mark

Answer to Problem 22P

The spring constant of the bungee cord is 73.38N/m2 .

Explanation of Solution

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The law of conservation of the energy is,

mgh=12kh12

m is the mass of jumper.

g is the acceleration due to gravity.

h is the total height.

k is the spring constant.

h1 is the height of simple harmonic oscillation.

Substitute 65.0kg for m , 9.8m/s2 for g , 36.0m for h and 25.0m for h1 in above equation to find k .

(65.0kg)(9.8m/s2)(36.0m)=12k(25.0m)2k=2(65.0kg)(9.8m/s2)(36.0m)(25.0m)2=73.38N/m2

Conclusion:

Therefore, the spring constant of the bungee cord is 73.38N/m2 .

(e)

To determine

The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper.

(e)

Expert Solution
Check Mark

Answer to Problem 22P

The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper is 16.32m .

Explanation of Solution

Section 1;

To determine: The equilibrium point from the lorded.

Answer: The equilibrium point from the lorded is 19.68m .

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The equation for the equilibrium point from the lorded is,

kx=mgx=mgk

  • x is the position of the spring.

The equilibrium point is calculated as,

y=L+x

  • L is the stretched length of the chord.

Substitute mgk for x in above expression.

y=L+(mgk)

Substitute 65.0kg for m , 9.8m/s2 for g , 73.38N/m2 for k and 11.0m for L in above equation to find y .

y=(11.0m)+(65.0kg)(9.8m/s2)(73.38N/m2)=19.68m

Section 2;

To determine: The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper.

Answer: The location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper is 16.32m .

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The amplitude of the motion is,

A=hy

Substitute 36.0m for h and 19.68m for y in above equation to find A .

A=(36.0m)(19.68m)=16.32m

Conclusion:

Therefore, the location of the equilibrium point where the spring force balances the gravitational force exerted on the jumper is 16.32m .

(f)

To determine

The angular frequency of the oscillation.

(f)

Expert Solution
Check Mark

Answer to Problem 22P

The angular frequency of the oscillation is 1.06rad/s .

Explanation of Solution

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The formula to calculate angular frequency of the oscillation is,

ω=km

Substitute 65.0kg for m and 73.38N/m2 for k in above equation to find ω .

ω=73.38N/m265.0kg=1.06rad/s

Conclusion:

Therefore, the angular frequency of the oscillation is 1.06rad/s .

(g)

To determine

The time interval required for the cord to stretched by 25.0m .

(g)

Expert Solution
Check Mark

Answer to Problem 22P

The time interval required for the cord to stretched by 25.0m is 2.0s .

Explanation of Solution

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The expression for the position of a particle in simple harmonic motion is,

x=Acos(ωt1)

Substitute mgk for x in above expression.

mgk=Acos(ωt1)

Substitute 65.0kg for m , 9.8m/s2 for g , 73.38N/m2 for k , 16.32m for A and 1.06rad/s for ω in above equation to find t1 .

(65.0kg)(9.8m/s2)(73.38N/m2)=(16.32m)cos((1.06rad/s)t1)8.68m(16.32m)=cos((1.06rad/s)t1)0.53=cos((1.06rad/s)t1)t1=2.0s

Conclusion:

Therefore, the time interval required for the cord to stretched by 25.0m is 2.0s .

(h)

To determine

The total time interval for the entire 36.0m drop.

(h)

Expert Solution
Check Mark

Answer to Problem 22P

The total time interval for the entire 36.0m drop is 3.49s .

Explanation of Solution

Given information:

The mass of bungee jumper is 65.0kg , the stretched length of the cord and free fall height is 11.0m , the distance where the jumper reaches before bouncing back is 36.0m and the height of simple harmonic oscillation is 25.0m .

The total time interval for the entire 36.0m drop is,

T=t+t1

Substitute 1.49s for t and 2.0s for t1 in above equation to find T .

T=1.49s+2.0s=3.49s

Conclusion:

Therefore, the total time interval for the entire 36.0m drop is 3.49s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.
Bheem and Ram, jump off either side of a bridge while holding opposite ends of a rope and swing back and forth under the bridge to save a child while avoiding a fire. Looking at the swing of just Bheem, we can approximate him as a simple pendulum with a period of motion of 5.59 s. How long is the pendulum ? When Bheem swings, he goes a full distance, from side to side, of 10.2 m.  What is his maximum velocity?  What is his maximum acceleration?
The position of a 0.300 kg object attached to a spring is described by x=0.271 m ⋅ cos(0.512π⋅rad/s ⋅t) (Assume t is in seconds.) Find the amplitude of the motion. Find the spring constant. Find the position of the object at t = 0.324 s. Find the object's velocity at t = 0.324 s.

Chapter 12 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY