Show that the following nonlinear system has 18 solutions if 0 ≤ α ≤ 2 π , 0 ≤ β ≤ 2 π , and 0 ≤ γ ≤ 2 π sin α + 2 cos β + 3 tan γ = 0 2 sin α + 5 cos β + 3 tan γ = 0 − sin α − 5 cos β + 5 tan γ = 0 [ Hint : Begin by making the substitutions x = sin α , y = cos β , and z = tan γ .]
Show that the following nonlinear system has 18 solutions if 0 ≤ α ≤ 2 π , 0 ≤ β ≤ 2 π , and 0 ≤ γ ≤ 2 π sin α + 2 cos β + 3 tan γ = 0 2 sin α + 5 cos β + 3 tan γ = 0 − sin α − 5 cos β + 5 tan γ = 0 [ Hint : Begin by making the substitutions x = sin α , y = cos β , and z = tan γ .]
Solve the system of equation for y using Cramer's rule. Hint: The
determinant of the coefficient matrix is -23.
-
5x + y − z = −7
2x-y-2z = 6
3x+2z-7
eric
pez
Xte
in
z=
Therefore, we have
(x, y, z)=(3.0000,
83.6.1 Exercise
Gauss-Seidel iteration with
Start with (x, y, z) = (0, 0, 0). Use the convergent Jacobi i
Tol=10 to solve the following systems:
1.
5x-y+z = 10
2x-8y-z=11
-x+y+4z=3
iteration (x
Assi 2
Assi 3.
4.
x-5y-z=-8
4x-y- z=13
2x - y-6z=-2
4x y + z = 7
4x-8y + z = -21
-2x+ y +5z = 15
4x + y - z=13
2x - y-6z=-2
x-5y- z=-8
realme Shot on realme C30
2025.01.31 22:35
f
Use Pascal's triangle to expand the binomial
(6m+2)^2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Fundamental Trigonometric Identities: Reciprocal, Quotient, and Pythagorean Identities; Author: Mathispower4u;https://www.youtube.com/watch?v=OmJ5fxyXrfg;License: Standard YouTube License, CC-BY