Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 31EAP
The 3.0-rn-long, 100 kg rigid beam of FIGURE EX12.31 is supported at each end. An 80 kg student stands 2.0 m from support 1. How much upward force does each support exert on the beam?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:04
Students have asked these similar questions
Hi, I am in physics I and I'm trying to understand this word problem. It saids that a 6.0-m uniform board is supported by two sawhorses 4.0m apart. A 32kg child walks on the board to 1.4 m beyond the right support when the board start to tip.
a.) Find the mass of the board
b.) Then he walks back 0.40m and stands still. Find the forces exerted by the supports at this time. (use the mass found in part a).
Please be detailed of how this works. Its a harder problem for me to understand. Thank you!
. A uniform beam having a mass of 60 kg and a length of 2.8 m is held in place at its lower end by a pin. Its upper end leans against a vertical frictionless wall as shown in the figure. What is the magnitude of the force the pin exerts on the beam?
A wooden plank is supported at two points as shown. What is the shortest distance from the end that a 80-kg person can stand without the other end lifting up? The plank is uniform, and its mass is 20.0 kg.
Chapter 12 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 12 - Prob. 1CQCh. 12 - If the angular velocity w is held constant, by...Ch. 12 - FIGURE Q12.3 shows three rotating disks, all of...Ch. 12 - 4. Must an object be rotating to have a moment of...Ch. 12 - 5. The moment of inertia of a uniform rod about an...Ch. 12 - 6. You have two solid steel spheres. Sphere 2 has...Ch. 12 - The professor hands you two spheres. They have the...Ch. 12 - Six forces are applied to the door in FIGURE...Ch. 12 - Prob. 9CQCh. 12 - Rank in order, from largest to smallest, the...
Ch. 12 - The solid cylinder and cylindrical shell in FIGURE...Ch. 12 - A diver in the pike position (legs straight, hands...Ch. 12 - Prob. 13CQCh. 12 - A high-speed drill reaches 2000 rpm in 0.50 s. a....Ch. 12 - A skater holds her arms outstretched as she spins...Ch. 12 - A ceiling fan with 80-cm-diameter blades is...Ch. 12 - An 18-cm-long bicycle crank arm, with a pedal at...Ch. 12 - Prob. 5EAPCh. 12 - The three masses shown in FIGURE EX12.6 are...Ch. 12 - The three masses shown in FIGURE EX12.7 are...Ch. 12 - A 100 g ball and a 200 g ball are connected by a...Ch. 12 - A thin, 100 g disk with a diameter of 8.0 cm...Ch. 12 - What is the rotational kinetic energy of the...Ch. 12 - The three200g masses in FIGURE EX12.11 are...Ch. 12 - A drum major twirls a 96-cm-long, 400 g baton...Ch. 12 - The four masses shown in FIGURE EX12.13 are...Ch. 12 - The four masses shown in FIGURE EXI2.13 are...Ch. 12 - The three masses shown in FIGURE EXI2.15 are...Ch. 12 - A 12-cm-diameter CD has a mass of 21 g. What is...Ch. 12 - A 25 kg solid door is 220 cm tall, 91 cm wide....Ch. 12 - Prob. 18EAPCh. 12 - In FIGURE EX12.19, what magnitude force provides...Ch. 12 - The 20-cm-diameter disk in FIGURE EX12.20 can...Ch. 12 - The axle in FIGURE EXI2.21 is half the distance...Ch. 12 - A 4.0-rn-long, 500 kg steel beam extends...Ch. 12 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 12 - An object’s moment of inertia is 2.0 kg m2. Its...Ch. 12 - An object whose moment of inertia is 4.0 kg m2...Ch. 12 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 12 - Starting from rest, a 12-cm-diameter compact disk...Ch. 12 - A 4.0 kg, 36-cm-diameter metal disk, initially at...Ch. 12 - The two objects in FIGURE EXI2.29 are balanced on...Ch. 12 - Prob. 30EAPCh. 12 - The 3.0-rn-long, 100 kg rigid beam of FIGURE...Ch. 12 - A 5.0 kg cat and a 2.0 kg bowl of tuna fish are at...Ch. 12 - A car tire is 60cm in diameter. The car is...Ch. 12 - A 500 g, 8.0-cm-diameter can is filled with...Ch. 12 - Prob. 35EAPCh. 12 - A solid sphere of radius R is placed at a height...Ch. 12 - Prob. 37EAPCh. 12 - Evaluate the cross products AB and CD .Ch. 12 - Prob. 39EAPCh. 12 - Force F=10j N is exerted on a particle at 5i+5j m....Ch. 12 - A 1.3 kg ball on the end of a lightweight rod is...Ch. 12 - What are the magnitude and direction of the...Ch. 12 - What is the angular momentum vector of the 2.0 kg,...Ch. 12 - Prob. 44EAPCh. 12 - Prob. 45EAPCh. 12 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 12 - Prob. 47EAPCh. 12 - A toy gyroscope has a ring of mass M and radius R...Ch. 12 - Prob. 49EAPCh. 12 - Prob. 50EAPCh. 12 - Determine the moment of inertia about the axis of...Ch. 12 - What is the moment of inertia of a 2.0 kg,...Ch. 12 - Calculate by direct integration the moment of...Ch. 12 - Calculate the moment of inertia of the rectangular...Ch. 12 - a. A disk of mass M and radius R has a hole of...Ch. 12 - Consider a solid cone of radius R, height H, and...Ch. 12 - Prob. 57EAPCh. 12 - A 3.0-m-long ladder, as shown in Figure 12.35....Ch. 12 - In FIGURE P12.59, an 80 kg construction worker...Ch. 12 - Prob. 60EAPCh. 12 - Prob. 61EAPCh. 12 - A 120-cm-wide sign hangs from a 5.0 kg,...Ch. 12 - Prob. 63EAPCh. 12 - Flywheels are large, massive wheels used to store...Ch. 12 - of mass m1and m2are connected by a massless string...Ch. 12 - The 2.0 kg, 30-cm-diameter disk in FIGURE P12.66...Ch. 12 - A 30-cm-diameter, 1.2 kg solid turntable rotates...Ch. 12 - Your engineering team has been assigned the task...Ch. 12 - A hollow sphere is rolling along a horizontal...Ch. 12 - A 750 g disk and a 760 g ring, both 15 cm in...Ch. 12 - A cylinder of radius R, length L. and mass M is...Ch. 12 - The 5.0 kg, 60-cm-diameter disk in FIGURE P12.72...Ch. 12 - A thin, uniform rod of length L and mass M is...Ch. 12 - A long, thin rod of mass M and length L is...Ch. 12 - The marble rolls down the track shown in FIGURE...Ch. 12 - sThe sphere of mass M and radius R in FIGURE...Ch. 12 - A satellite follows the elliptical orbit shown in...Ch. 12 - A 10 g bullet traveling at 400 m/s strikes a 10...Ch. 12 - A 200 g, 40-cm-diameter turntable rotates on...Ch. 12 - Luc, who is 1.80 m tall and weighs 950 N, is...Ch. 12 - A merry-go-round is a common piece of playground...Ch. 12 - A 45 kg figure skater is spinning on the toes of...Ch. 12 - Prob. 83EAPCh. 12 - The earth’s rotation axis, which is tilted 23.5...Ch. 12 - sThe bunchberry flower has the fastest-moving...Ch. 12 - The two blocks in FIGURE CP12.86 are connected by...Ch. 12 - A rod of length L and mass M has a nonuniform mass...Ch. 12 - In FIGURE CP12.88, a 200 g toy car is placed on a...Ch. 12 - Prob. 89EAPCh. 12 - A 75 g, 30-cm-long rod hangs vertically on a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. The correct sequence of levels forming the structural hierarchy is
A. (a) organ, organ system, cellular, che...
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
The reason for rainfall to be measured in centimeters or inches and not in milliliters or cubic centimeters nee...
Living By Chemistry: First Edition Textbook
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. About how old is the solar system? (a)...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Ruby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forwardA horizontal plank is 10 meters long and weighs 100 N. Supports A and B are 1 meter from each end. An 800 N person stands at support A or to the right of support A the plank will not tip. How close to the left edge can the person stand without tipping the plank?arrow_forwardA rigid beam of length 1.8 m is in equilibrium, with one end attached to a wall by a hinge, and the other end held in place by a thin, massless wire as shown in the figure on Zoom. The wire will break if tension exceeds 1300 N. What is the maximum mass of the beam that can still be supported by the wire?arrow_forward
- A 10-m beam of mass 280 kg extends over a ledge. The beam is not attached, but simply rests on the surface. A 76-kg student intends to position the beam so that he can walk to the end of it. How far from the edge of the ledge can the beam extend?arrow_forwardA woman who weighs 500 N stands on a 5.2-m-long board that weighs 94 N. The board is supported at each end. The support force at the right end is 3 times the support force at the left end. How far from the right end is the woman standing?arrow_forwardI need helparrow_forward
- A 60 kg diver stands at the end of a 30 kg springboard, as shown. The board is attached to a hinge at the left end but simply rests on the right support. What is the magnitude of the vertical force exerted by the hinge on the board?arrow_forward45 kg.…* X = ? +0.4 m -0.5 m→ 30 kg 40 kg The 3m long uniform plank is supported by a fulcrum at the midpoint. Where should a 45kg student must be from the midpoint to be able to balance the plank?arrow_forwardA uniform rod has weight 4.0 N and length 1.0 m. It is resting on two supports – the left support is positioned 0.10 m from the left end and the right support is 0.60 m from the left end. A 1.0-N object is hung at a point that is 0.20 m from the right support. Determine the magnitude of the two support forces.arrow_forward
- In the figure, a uniform beam of weight 400 N and length 3.9 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance D above the beam. The least tension that will snap the cable is 1400 N. What value of D corresponds to that tension? Number MO Units Cable A Beamarrow_forwardA uniform plank 8.00 m in length with mass 65.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the left-hand end. What is the maximum additional mass you could place on the right-hand end of the plank and have the plank still be at rest?arrow_forwardThe uniform boom shown below weighs 3000 N. It is supported by the horizontal guy wire and by the hinged support at point A. What are the forces on the boom due to the wire and due to the support at A? Does the force at A act along the boom?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY