Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 1.2, Problem 24P
To determine
Show that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciated
Please answer with the sketches.
The beam is made of elastic perfectly plastic material. Determine the shape factor for the cross
section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²]
y
25 mm
75 mm
I
25 mm
200 mm
25 mm
125
Figure Q3
Chapter 1 Solutions
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Ch. 1.2 - Prob. 1PCh. 1.2 - Prob. 2PCh. 1.2 - Prob. 3PCh. 1.2 - Prob. 4PCh. 1.2 - Verify the dimensions, in both the FLT system and...Ch. 1.2 - If u is a velocity, x a length, and t a time, what...Ch. 1.2 - Verify the dimensions, in both the FLT system and...Ch. 1.2 - If p is a pressure, V a velocity, and ρ a fluid...Ch. 1.2 - If P is a force and x a length, what are the...Ch. 1.2 - If V is a velocity, ℓ a length, and ν a fluid...
Ch. 1.2 - The momentum flux (discussed in Chapter 5) is...Ch. 1.2 - An equation for the frictional pressure loss Δ p...Ch. 1.2 - The volume rate of flow, Q, through a pipe...Ch. 1.2 - Show that each term in the following equation has...Ch. 1.2 - The pressure difference, Δp, across a partial...Ch. 1.2 - Assume that the speed of sound, c, in a fluid...Ch. 1.2 - A formula to estimate the volume rate of flow, Q,...Ch. 1.2 - A commercial advertisement shows a pearl falling...Ch. 1.2 - Express the following quantities in SI units: (a)...Ch. 1.2 - Express the following quantities in BG units: (a)...Ch. 1.2 - Express the following quantities in SI units: (a)...Ch. 1.2 - Water flows from a large drainage pipe at a rate...Ch. 1.2 - The universal gas constant R0 is equal to 49,700...Ch. 1.2 - Dimensionless combinations of quantities (commonly...Ch. 1.2 - An important dimensionless parameter in certain...Ch. 1.4 - Obtain a photograph/image of a situation in which...Ch. 1.4 - A tank contains 500 kg of a liquid whose specific...Ch. 1.4 - A stick of butter at 35 °F measures 1.25 in. ×...Ch. 1.4 - Clouds can weigh thousands of pounds due to their...Ch. 1.4 - A tank of oil has a mass of 25 slugs, (a)...Ch. 1.4 - A certain object weighs 300 N at the Earth’s...Ch. 1.4 - The density of a certain type of jet fuel is 775...Ch. 1.4 - At 4 °C a mixture of automobile antifreeze (50%...Ch. 1.4 - A hydrometer is used to measure the specific...Ch. 1.4 - An open, rigid-walled, cylindrical tank contains 4...Ch. 1.4 - Estimate the number of pounds of mercury it would...Ch. 1.4 - A mountain climber’s oxygen tank contains 1 lb of...Ch. 1.4 - The information on a can of pop indicates that the...Ch. 1.4 -
The variation in the density of water, ρ, with...Ch. 1.4 - If 1 cup of cream having a density of 1005 kg/m3...Ch. 1.4 - With the exception of the 410 bore, the gauge of a...Ch. 1.4 - The presence of raindrops in the air during a...Ch. 1.5 - A regulation basketball is initially flat and is...Ch. 1.5 - Nitrogen is compressed to a density of 4 kg/m3...Ch. 1.5 - The temperature and pressure at the surface of...Ch. 1.5 - A closed tank having a volume of 2 ft3 is filled...Ch. 1.5 - Assume that the air volume in a small automobile...Ch. 1.5 - A compressed air tank contains 5 kg of air at a...Ch. 1.5 - A rigid tank contains air at a pressure of 90 psia...Ch. 1.5 - The density of oxygen contained in a tank is 2.0...Ch. 1.5 - The helium-filled blimp shown in Fig. P1.52 is...Ch. 1.5 - Develop a computer program for calculating the...Ch. 1.6 - Obtain a photograph/image of a situation in which...Ch. 1.6 - For flowing water, what is the magnitude of the...Ch. 1.6 - Make use of the data in Appendix B to determine...Ch. 1.6 - One type of capillary-tube viscometer is shown in...Ch. 1.6 - The viscosity of a soft drink was determined by...Ch. 1.6 - The viscosity of a certain fluid is 5 × 10−4...Ch. 1.6 - The kinematic viscosity and specific gravity of a...Ch. 1.6 - A liquid has a specific weight of 59 lb/ft3 and a...Ch. 1.6 - The kinematic viscosity of oxygen at 20 °C and a...Ch. 1.6 - Fluids for which the shearing stress, τ, is not...Ch. 1.6 - Water flows near a flat surface and some...Ch. 1.6 - Calculate the Reynolds numbers for the flow of...Ch. 1.6 - Prob. 66PCh. 1.6 - For air at standard atmospheric pressure the...Ch. 1.6 - Use the values of viscosity of air given in Table...Ch. 1.6 - The viscosity of a fluid plays a very important...Ch. 1.6 - Prob. 70PCh. 1.6 - For a certain liquid μ = 7.1 × 10−5 lb • s/ft2 at...Ch. 1.6 - For a parallel plate arrangement of the type shown...Ch. 1.6 - Prob. 73PCh. 1.6 - Three large plates are separated by thin layers of...Ch. 1.6 - There are many fluids that exhibit non-Newtonian...Ch. 1.6 - The sled shown in Fig. P1.76 slides along on a...Ch. 1.6 - A 25-mm-diameter shaft is pulled through a...Ch. 1.6 - A hydraulic lift in a service station has a...Ch. 1.6 - A piston having a diameter of 5.48 in. and a...Ch. 1.6 - A 10-kg block slides down a smooth inclined...Ch. 1.6 - A layer of water flows down an inclined fixed...Ch. 1.6 - Oil (absolute viscosity = 0.0003 lb · s /ft2,...Ch. 1.6 - Standard air flows past a flat surface, and...Ch. 1.6 - A new computer drive is proposed to have a disc,...Ch. 1.6 - The space between two 6-in.-long concentric...Ch. 1.6 - Prob. 86PCh. 1.6 - The viscosity of liquids can be measured through...Ch. 1.6 - Prob. 88PCh. 1.6 - Prob. 89PCh. 1.6 - Prob. 90PCh. 1.6 - Some measurements on a blood sample at 37 °C (98.6...Ch. 1.7 - Obtain a photograph/image of a situation in which...Ch. 1.7 - A sound wave is observed to travel through a...Ch. 1.7 - Prob. 94PCh. 1.7 - Estimate the increase in pressure (in psi)...Ch. 1.7 - A 1-m3 volume of water is contained in a rigid...Ch. 1.7 - Determine the speed of sound at 20 °C in (a) air,...Ch. 1.7 - Prob. 98PCh. 1.7 - Prob. 99PCh. 1.7 - Prob. 100PCh. 1.7 - Prob. 101PCh. 1.7 - Prob. 102PCh. 1.7 - Oxygen at 30 °C and 300 kPa absolute pressure...Ch. 1.7 - Compare the isentropic bulk modulus of air at 101...Ch. 1.7 - Prob. 105PCh. 1.7 - Often the assumption is made that the flow of a...Ch. 1.7 - Prob. 107PCh. 1.7 - Prob. 108PCh. 1.7 - Prob. 109PCh. 1.7 - Prob. 110PCh. 1.8 - During a mountain climbing trip it is observed...Ch. 1.8 - Prob. 112PCh. 1.8 - A partially filled closed tank contains ethyl...Ch. 1.8 - Prob. 114PCh. 1.8 - When water at 70 °C flows through a converging...Ch. 1.8 - At what atmospheric pressure will water boil at 35...Ch. 1.9 - Obtain a photograph/image of a situation in which...Ch. 1.9 - When a 2-mm-diameter tube is inserted into a...Ch. 1.9 - A soda straw with an inside diameter of 0.125 in....Ch. 1.9 - Small droplets of carbon tetrachloride at 68 °F...Ch. 1.9 - A 12-mm-diameter jet of water discharges...Ch. 1.9 - A method used to determine the surface tension of...Ch. 1.9 - Calculate the pressure difference between the...Ch. 1.9 - As shown in Video V1.9, surface tension forces can...Ch. 1.9 - Prob. 125PCh. 1.9 - Under the right conditions, it is possible, due to...Ch. 1.9 - An open, clean glass tube, having a diameter of 3...Ch. 1.9 - Prob. 128PCh. 1.9 - Determine the height that water at 60 °F will rise...Ch. 1.9 - Two vertical, parallel, clean glass plates are...Ch. 1.9 - (See The Wide World of Fluids article titled...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic- perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine: i. The shape factor of the cross section ii. The bending moment at which the plastic zones at the top and bottom of the bar are 30 mm thick. 15 mm 30 mm 15 mm 30 mm 30 mm 30 mmarrow_forwardA torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forwardAn external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forward
- so A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardI need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forward
- Ashaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardchanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forwardA thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forward
- A ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forwardThe gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forwardә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY