Steele Electric Products Inc. assembles cell phones. For the last 10 days, Mark Nagy completed a mean of 39 phones per day, with a standard deviation of 2 per day. Debbie Richmond completed a mean of 38.5 phones per day, with a standard deviation of 1.5 per day. At the .05 significance level, can we conclude that there is more variation in Mark’s daily production?
Find whether there is more variation in Person M’s daily production.
Answer to Problem 1SR
There is no more variation in Person M’s daily production.
Explanation of Solution
Here,
The null and alternative hypotheses are stated below:
That is, the variation in Person M’s daily production is less than or equal to the variation in Person R’s production.
That is, the variation in Person M’s daily production is more than that of Person R’s production.
Step-by-step procedure to obtain the test statistic using MINITAB software:
- Choose Stat > Basic Statistics > 2 Variance.
- Under Data, choose Sample standard deviation.
- In First, enter 10 under Sample size.
- In First, enter 2 under Standard deviation
- In Second, enter 10 under Sample size.
- In Second, enter 1.5 under Standard deviation
- Check Options, enter Confidence level as 95.0.
- In Hypothesized ratio StDev 1 / StDev 2
- Choose greater than in alternative.
- Click OK in all dialog boxes.
- Output obtained using MINITAB is represented as follows:
- From the above output, the F test statistic value is 1.78 and the p-value is 0.202.
Decision Rule:
If the p-value is less than the level of significance, reject the null hypothesis. Otherwise, fail to reject the null hypothesis.
Conclusion:
The level of significance is 0.05.
From the output, the p-value is 0.202.
The p-value is greater than the level of significance 0.05. Hence, one is failed to reject the null hypothesis at the 0.05 significance level.
Therefore, there is no more variation in Person M’s daily production.
Want to see more full solutions like this?
Chapter 12 Solutions
STAT. TECH. FOR BUSINESS AND ECO (LL)
- 2. Which of the following statements are (not) true? lim sup{An U Bn} 818 lim sup{A, B} 818 lim inf{An U Bn} 818 818 lim inf{A, B} An An A, Bn- A, BnB →B = = = lim sup A, U lim sup Bn; 818 818 lim sup A, lim sup Bn; 818 81U lim inf A, U lim inf Bn; 818 818 lim inf A, lim inf Bn; n→X 818 An U BRAUB as no; An OBRANB as n→∞.arrow_forwardThroughout, A, B, (An, n≥ 1), and (Bn, n≥ 1) are subsets of 2. 1. Show that AAB (ANB) U (BA) = (AUB) (AB), Α' Δ Β = Α Δ Β, {A₁ U A2} A {B₁ U B2) C (A1 A B₁}U{A2 A B2).arrow_forward16. Show that, if X and Y are independent random variables, such that E|X|< ∞, and B is an arbitrary Borel set, then EXI{Y B} = EX P(YE B).arrow_forward
- Proposition 1.1 Suppose that X1, X2,... are random variables. The following quantities are random variables: (a) max{X1, X2) and min(X1, X2); (b) sup, Xn and inf, Xn; (c) lim sup∞ X and lim inf∞ Xn- (d) If Xn(w) converges for (almost) every w as n→ ∞, then lim- random variable. → Xn is aarrow_forwardExercise 4.2 Prove that, if A and B are independent, then so are A and B, Ac and B, and A and B.arrow_forward8. Show that, if {Xn, n ≥ 1) are independent random variables, then sup X A) < ∞ for some A.arrow_forward
- 8- 6. Show that, for any random variable, X, and a > 0, 8 心 P(xarrow_forward15. This problem extends Problem 20.6. Let X, Y be random variables with finite mean. Show that 00 (P(X ≤ x ≤ Y) - P(X ≤ x ≤ X))dx = E Y — E X.arrow_forward(b) Define a simple random variable. Provide an example.arrow_forward17. (a) Define the distribution of a random variable X. (b) Define the distribution function of a random variable X. (c) State the properties of a distribution function. (d) Explain the difference between the distribution and the distribution function of X.arrow_forward16. (a) Show that IA(w) is a random variable if and only if A E Farrow_forward15. Let 2 {1, 2,..., 6} and Fo({1, 2, 3, 4), (3, 4, 5, 6}). (a) Is the function X (w) = 21(3, 4) (w)+711.2,5,6) (w) a random variable? Explain. (b) Provide a function from 2 to R that is not a random variable with respect to (N, F). (c) Write the distribution of X. (d) Write and plot the distribution function of X.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill