
Problem Solving with C++ (10th Edition)
10th Edition
ISBN: 9780134448282
Author: Walter Savitch, Kenrick Mock
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 1PP
Program Plan Intro
Percentage Calculation
Program Plan:
ADT interface filename: “Percent.h”
- Include required header files.
- Define a class “Percent”.
- Declare function for overload operator “==” and “<”.
- Declare default constructor for “Percent” class.
- Declare a constructor for “Percent” class with one integer parameter.
- Declare function for input overload operator and output overload operator.
- Declare function for binary overload operators “+”, “-” and “*”.
- Declare a member variable “value”.
ADT implementation filename: “Percent.cpp”
- Include required header files.
- Define default constructor for “Percent” class.
- Here assign the value of “value” to “0”.
- Define constructor for “Percent” class with one integer parameter “percentValue”.
- In this constructor, assign “value” to “percentValue”.
- Define a function for overload operator “<”.
- This function is used to check whether the first percent is less than second percent or not.
- Define a function for overload operator “==”.
- This function is used to check whether the two percent’s are equal or not.
- Define a function for input operator “>>”.
- Define a function for input operator “<<”.
- Define a function for binary overload operator “+” to compute the sum of two percentages.
- In this function, create an object “sum”.
- Then compute the addition of two percent’s.
- Finally returns the result of addition.
- Define a function for binary overload operator “-” to compute the subtraction of two percentages.
- In this function, create an object “s”.
- Then compute the subtraction of two percent’s.
- Finally returns the result of subtraction.
- Define a function for binary overload operator “*” to compute the multiplication of one percent and an integer value.
- In this function, create an object “m”.
- Then compute the multiplication of one percent and an integer value.
- Finally returns the result of multiplication.
Application filename: “main.cpp”
- Include required header files.
- Define main function.
- Create two objects “percent1” and “percent2” from “Percent” class.
- Create an object “percent3” with one integer parameter “10”.
- Declare an integer variable “intValue”.
- Read the percentage 1 and percentage 2 from user.
- Check the two percentages using “==” operator.
- Check the two percentages using “<” operator.
- Create an object “sumPercent” from “Percent” class.
- Then compute and display sum of two percentages.
- Create an object “subPercent” from “Percent” class.
- Then compute and display difference of two percentages.
- Display percentage 3 from assigned value.
- Read an integer from user to multiply with a percentage 3.
- Finally compute and display the multiplication of “percent3” and a user entered integer value.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Why is Linux popular? What would make someone choose a Linux OS over others? What makes a server? How is a server different from a workstation? What considerations do you have to keep in mind when choosing between physical, hybrid, or virtual server and what are the reasons to choose a virtual installation over the other options?
Objective you will:
1. Implement a Binary Search Tree (BST) from scratch, including the Big Five (Rule of Five)
2. Implement the TreeSort algorithm using a in-order traversal to store sorted elements in a vector.
3. Compare the performance of TreeSort with C++'s std::sort on large datasets.
Part 1: Understanding TreeSort How TreeSort Works TreeSort is a comparison-based sorting algorithm that leverages a Binary Search Tree (BST):
1. Insert all elements into a BST (logically sorting them).
2. Traverse the BST in-order to extract elements in sorted order.
3. Store the sorted elements in a vector.
Time Complexity
Operation Average Case Worst Case (Unbalanced Tree)Insertion 0(1log n) 0 (n)Traversal (Pre-order) 0(n) 0 (n)Overall Complexity 0(n log n) 0(n^2) (degenerated tree)
Note: To improve performance, you could use a…
I need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
Chapter 12 Solutions
Problem Solving with C++ (10th Edition)
Ch. 12.1 - Suppose that you are defining an ADT class and...Ch. 12.1 - Which of the following files has a name that ends...Ch. 12.1 - Prob. 3STECh. 12.1 - Suppose you define a class in separate files and...Ch. 12.1 - Suppose you want to change the implementation of...Ch. 12.1 - What is the difference between an ADT you define...Ch. 12.2 - Consider the program shown in Display 12.5. Could...Ch. 12.2 - In Self-Test Exercise 7, we saw that you could not...Ch. 12.2 - Prob. 9STECh. 12.2 - Prob. 10STE
Ch. 12.2 - Consider the following function declarations from...Ch. 12.2 - Would the program in Display 12.8 behave any...Ch. 12.2 - Prob. 13STECh. 12.2 - In Display 12.7 there are two groupings for the...Ch. 12 - Add the following member function to the ADT class...Ch. 12 - Prob. 3PCh. 12 - Redo Practice Programs 2 from Chapter 11, but this...Ch. 12 - This Practice Program explores how the unnamed...Ch. 12 - Prob. 1PPCh. 12 - Redo (or do for the first time) Programming...Ch. 12 - Prob. 3PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardI would like to know the main features about the following three concepts: 1. Default forwarded 2. WINS Server 3. IP Security (IPSec).arrow_forwardmap the following ER diagram into a relational database schema diagram. you should take into account all the constraints in the ER diagram. Underline the primary key of each relation, and show each foreign key as a directed arrow from the referencing attributes (s) to the referenced relation. NOTE: Need relational database schema diagramarrow_forward
- What is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forwardTask 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forward
- Can you please solve this without AIarrow_forward1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forwardCHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forward
- HELP CHAT GPT GAVE ME WRONG ANSWER Consider the following implementation of a container that will be used in a concurrent environment. The container is supposed to be used like an indexed array, but provide thread-safe access to elements. struct concurrent_container { // Assume it’s called for any new instance soon before it’s ever used void concurrent_container() { init_mutex(&lock); } ~concurrent_container() { destroy_mutex(&lock); } // Returns element by its index. int get(int index) { lock.acquire(); if (index < 0 || index >= size) { return -1; } int result = data[index]; lock.release(); return result; } // Sets element by its index. void set(int index, int value) { lock.acquire(); if (index < 0 || index >= size) { resize(size); } data[index] = value; lock.release(); } // Extend maximum capacity of the…arrow_forwardWrite a C program using embedded assembler in which you use your own function to multiply by two without using the product. Tip: Just remember that multiplying by two in binary means shifting the number one place to the left. You can use the sample program from the previous exercise as a basis, which increments a variable. Just replace the INC instruction with SHL.arrow_forwardusing r languagearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage
- Np Ms Office 365/Excel 2016 I NtermedComputer ScienceISBN:9781337508841Author:CareyPublisher:CengageMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:9781337508841
Author:Carey
Publisher:Cengage

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning