Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 1P
To determine
The fraction of the Sun’s mass is hotter than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the model shown in the table below, what fraction of the Sun's mass is hotter than 5,000,000 K?
R/R SunT (106 K) Density (g/cm³)
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
0.006
0.60
1.2
2.3
3.1
4.9
5.1
6.9
9.3
13.1
15.7
0.00
0.009
0.035
0.12
0.40
1.3
4.1
13
36
89
150
M/M Sun L/L Sun
1.00
0.999
0.996
0.990
0.97
0.92
0.82
0.63
0.34
0.073
0.000
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.99
0.91
0.40
0.00
. If the sun radiates energy at the rate of 4 x 1026 Js-1, what is the rate at which its mass is decreasing?
a) 5.54 x 109 kgs-1
b) 4.44 x 109 kgs-1
c) 3.44 x 109 kgs-1
d) 2.44 x 109 kgs-1
The Sun’s luminosity (or power) is 4 x 1026 Watts (=J/s). How many kilograms of hydrogen must be fused every second to maintain this luminosity? (hint: work backwards from the energy per second to the mass released to the amount of hydrogen required, using the results from the previous question.)
The Sun’s mass is ~2x1030 kg. If 10% of this is Hydrogen available in the core, how long will the Sun be able to continue fusing hydrogen at this rate? This is considered the Sun's "lifetime". If the Sun is 4.6 billion years old (and assuming it's power output is constant), how many years does it have left?
Chapter 12 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 12 - Prob. 1RQCh. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Describe the law of hydrostatic equilibrium.Ch. 12 - Prob. 7RQCh. 12 - Prob. 8RQCh. 12 - Prob. 9RQCh. 12 - Prob. 10RQ
Ch. 12 - Prob. 11RQCh. 12 - Prob. 12RQCh. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Prob. 15RQCh. 12 - Prob. 16RQCh. 12 - Prob. 17RQCh. 12 - Prob. 18RQCh. 12 - Prob. 19RQCh. 12 - What gives the triple-alpha process its name? Why...Ch. 12 - Prob. 21RQCh. 12 - Prob. 22RQCh. 12 - Prob. 23RQCh. 12 - Prob. 24RQCh. 12 - Prob. 25RQCh. 12 - Prob. 26RQCh. 12 - Prob. 27RQCh. 12 - Prob. 28RQCh. 12 - Prob. 29RQCh. 12 - Prob. 30RQCh. 12 - Prob. 31RQCh. 12 - How Do We Know? How can mathematical models allow...Ch. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - Prob. 14PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 1SOPCh. 12 - Prob. 2SOPCh. 12 - Prob. 1LTLCh. 12 - Prob. 2LTLCh. 12 - Prob. 3LTLCh. 12 - Prob. 4LTLCh. 12 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The radius of the Sun is 0.7 million km. What percentage of the radius is taken up by the chromosphere? (Hint: Refer to Figure 8-1.)arrow_forwardIs the Sun on the zero-age main sequence? Explain your answer.arrow_forwardNeutrinos produced in the core of the Sun carry energy to its exterior. Is the mechanism for this energy transport conduction, convection, or radiation?arrow_forward
- On which edge of the main sequence band on an HR diagram would the zero-age main sequence be?arrow_forwardWhy do you suppose so great a fraction of the Sun’s energy comes from its central regions? Within what fraction of the Sun’s radius does practically all of the Sun’s luminosity originate (see Figure 16.16)? Within what radius of the Sun has its original hydrogen been partially used up? Discuss what relationship the answers to these questions bear to one another. Figure 16.16 shows how the temperature, density, rate of energy generation, and composition vary from the center of the Sun to its surface.arrow_forwardFrom the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forward
- Which aspects of the Sun’s activity cycle have a period of about 11 years? Which vary during intervals of about 22 years?arrow_forwardIf our Sun were surrounded by a cloud of gas, would this cloud be an emission nebula? Why or why not?arrow_forwardDuring the Maunder minimum a. solar brightness dropped slightly b. the average surface temperature of the sun dropped c. few sunspots were observedarrow_forward
- Status of Sun's core and its temperature (The letters correspond to the stages in Figure 21.1.) 3. Stage A: T10 million K. Sun is in equilibrium. 4. Stage B: T 100 million K Core collapse stops. 5. Stage C: Helium flash 6. Stage D: T 100 million K. Sun is in equilibrium. 7. Stage E: T800 million K. Core collapse stops. If fusion is occurring in core or in shell around the core, mark with a ✔in the correct column. Core fusion H to He FUSION ✓ Core fusion He to C Shell fusion H to He Shell fusion He to C PRESSURE VERSUS GRAVITY CORE • REST OF THE STAR Pressure comes from electron degeneracy Pressure Gravity Gravity Pressure region contracts and heats Pressure > Gravity region expands and coolsarrow_forwardAssume that Hydrogen comprises 79% of the Sun's mass. How much mass is this? 1.57e+30 kg Only about 11% of the initial Hydrogen in the Sun is in the core where it is hot enough to burn. What was the total mass of the inital H in the core of the Sun? Hint: Use the answer above and the percent in the core to determine the total mass. Using the results from above, how much total energy is available to the Sun via nuclear fusion over its lifetime? (HINT: only 0.71% of the total mass of the available H in the core is converted into energy) Hint: E = m c^2arrow_forwardIf the sun expanded to a radius 5000 times its present radius, what would its average density be (in g/cm3?)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning