
Determine the empirical and molecular formulas of each of the following substances:
a. Ibuprofen, a headache remedy, contains 75.69% C, 8.80% H, and 15.51% 0 by mass and has a molar mass of 206 g/mol.
b. Cadaverine, a foul-smelling substance produced by the action of bacteria on meat, contains 58.55% C, 13.81% H, and 27.40% N by mass; its molar mass is 102.2 g/mol.
c. Epinephrine (adrenaline), a hormone secreted into the bloodstream in times of danger or stress, contains 59.0% C, 7.1% H, 262% 0, and 7.7% N by mass; its molar mass is about 180 amu.
(a)

Interpretation: The empirical and molecular formula of ibuprofen.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of ibuprofen is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of oxygen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of oxygen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For oxygen
The calculated value of the number of moles is multiplied by a common multiple
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of ibuprofen:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of oxygen is
The empirical formula mass of
The given molar mass value is divided by the calculated empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
(b)

Interpretation: The empirical and molecular formula of cadeverine.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of cadeverine is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of nitrogen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For nitrogen
The calculated value of the number of moles is multiplied by a common multiple
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of cadaverine:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The empirical formula mass of
The given molar mass value is divided by the calculate empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
(c)

Interpretation: The empirical and molecular formula of epinephrine.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of epinephrine is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of nitrogen is
Mass percent of oxygen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The atomic mass of oxygen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For nitrogen
For oxygen
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of epinephrine:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The atomic mass of oxygen is
The empirical formula mass of
The given molar mass value is divided by the calculate empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: The Central Science, Books a la Carte Plus MasteringChemistry with eText -- Access Card Package (13th Edition)
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





