
Determine the empirical and molecular formulas of each of the following substances:
a. Ibuprofen, a headache remedy, contains 75.69% C, 8.80% H, and 15.51% 0 by mass and has a molar mass of 206 g/mol.
b. Cadaverine, a foul-smelling substance produced by the action of bacteria on meat, contains 58.55% C, 13.81% H, and 27.40% N by mass; its molar mass is 102.2 g/mol.
c. Epinephrine (adrenaline), a hormone secreted into the bloodstream in times of danger or stress, contains 59.0% C, 7.1% H, 262% 0, and 7.7% N by mass; its molar mass is about 180 amu.
(a)

Interpretation: The empirical and molecular formula of ibuprofen.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of ibuprofen is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of oxygen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of oxygen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For oxygen
The calculated value of the number of moles is multiplied by a common multiple
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of ibuprofen:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of oxygen is
The empirical formula mass of
The given molar mass value is divided by the calculated empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
(b)

Interpretation: The empirical and molecular formula of cadeverine.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of cadeverine is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of nitrogen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For nitrogen
The calculated value of the number of moles is multiplied by a common multiple
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of cadaverine:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The empirical formula mass of
The given molar mass value is divided by the calculate empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
(c)

Interpretation: The empirical and molecular formula of epinephrine.
Concept introduction:
A formula that depicts the simplest ratio of the constituent elements in a compound is known as the empirical formula.
The empirical formula mass of a given compound is the total of the atomic masses of the constituent atoms.
The steps to determine the molecular formula from the empirical formula are,
- The empirical formula mass is calculated.
- The gram molecular mass of the compound is divided by the empirical formula mass.
- The subscripts within the empirical formula are multiplied by the number obtained in the previous step.
- The chemical formula obtained having new subscript values is the molecular formula of the compound.
Answer to Problem 1DE
Solution: The empirical formula of epinephrine is
Explanation of Solution
Given that,
Mass percent of carbon is
Mass percent of hydrogen is
Mass percent of nitrogen is
Mass percent of oxygen is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The atomic mass of oxygen is
The number of moles is calculated using the formula (assuming the sample to be
Substituting the values of given mass and the molar mass in the above expression,
The calculated values are divided by the smallest number of moles to determine the simplest whole number ratio of moles of each constituent,
For carbon
For hydrogen
For nitrogen
For oxygen
Therefore, the empirical formula obtained is
Now, to determine the molecular formula of epinephrine:
Given that,
Empirical formula is
Molar mass of the compound is
The atomic mass of carbon is
The atomic mass of hydrogen is
The atomic mass of nitrogen is
The atomic mass of oxygen is
The empirical formula mass of
The given molar mass value is divided by the calculate empirical formula mass value to obtain a whole number multiple,
The subscripts of the empirical formula are multiplied by the whole number multiple obtained to get the molecular formula of the given compound,
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: The Central Science (13th Edition)
- Please help me with number 5 using my data and graph. I think I might have number 3 and 4 but if possible please check me. Thanks in advance!arrow_forwarddict the major products of this organic reaction. C Explanation Check 90 + 1.0₂ 3 2. (CH3)2S Click and drag f drawing a stru © 2025 McGraw Hill LLC. All Rights Reserved. • 22 4 5 7 8 Y W E R S F H Bilarrow_forwardcan someone draw out the reaction mechanism for this reaction showing all the curly arrows and 2. Draw the GPNA molecule and identify the phenylalanine portion. 3. Draw L-phenylalanine with the correct stereochemistryarrow_forward
- What is the reaction mechanism for this?arrow_forwardPredict the major products of both organic reactions. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. esc esc Explanation Check 2 : + + X H₁₂O + Х ง WW E R Y qab Ccaps lock shift $ P X Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil T FR F18 9 G t K L Z X V B N M control opption command command T C darrow_forwardDraw the Markovnikov product of the hydrohalogenation of this alkene. this problem. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for caps lock Explanation Check 2 W E R + X 5 HCI Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil Y F G H K L ZZ X C V B N M control opption command F10 F10 command 4 BA Ar Carrow_forward
- I don't understand why the amide on the top left, with the R attached to one side, doesn't get substituted with OH to form a carboxylic acid. And if only one can be substituted, why did it choose the amide it chose rather than the other amide?arrow_forwardesc Draw the Markovnikov product of the hydration of this alkene. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for this problem. Explanation Check BBB + X 0 1. Hg (OAc)2, H₂O 2. Na BH 5 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bl P 豆 28 2 28 N 9 W E R T Y A S aps lock G H K L Z X C V B N M T central H command #e commandarrow_forwardC A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. (X) This transformation can't be done in one step. + Tarrow_forward
- く Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. Explanation Check OH + + ✓ 2 H₂SO 4 O xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardDraw the skeletal ("line") structure of 1,3-dihydroxy-2-pentanone. Click and drag to start drawing a structure. X Parrow_forwardPredicting edict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. + No reaction. Explanation Check HO Na O H xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Iarrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





