MindTap Business Statistics for Ragsdale's Spreadsheet Modeling & Decision Analysis, 8th Edition, [Instant Access], 2 terms (12 months)
8th Edition
ISBN: 9781337274876
Author: Cliff Ragsdale
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A young computer engineer has $12,000 to invest and three different investment options (funds) to choose from. Type 1 guaranteed investment funds offer an expected rate of return of 7%, Type 2 mixed funds (part is guaranteed capital) have an expected rate of return of 8%, while an investment on the Stock Exchange involves an expected rate of return of 12%, but without guaranteed investment capital. Computer engineer has decided not to invest more than $2,000 on the Stock Exchange in order to minimize the risk. Moreover for tax reasons, she needs to invest at least three times more in guaranteed investment funds than in mixed funds.
Assume that at the end of the year the returns are those expected; she is trying to determine the optimum investment amounts.
(a) Express this problem as a linear programming model with two decision variables.(b) Solve the problem with the graphical solution procedure and define the optimum solution.
Donald Harris received a windfall and needs to invest it for tax reasons. He went to his brother-in-law, Joe Harris, who is a financial advisor. Joe prepared a matrix that illustrated the possible returns on investment for different investment strategies under different economic conditions. That matrix is given below. Donald Harris reads the Wall Drive Journal and came across an article that stated that the probability that there would be a major downturn would be 10%; the probability of a downturn would be 30%; the probability of an upturn would be 40%; and that the probability of a major upturn would be 20%. Based on these numbers, what investment strategy should Donald Harris adopt?
Future Air Traffic
Strategies
Major Downturn
Downturn
Upturn
Major Upturn
Contrarian
20%
10%
5%
-15%
Risk Averse
2%
4%
7%
10%
Growth
-10%
-8%
13%
20%
Aggressive
-25%
-20%
11%
35%
Group of answer choices
In the prospectus for the Brazos Aggressive Growth fund, the fee table indicates that the fund has a 12b-1 fee of 0.35 percent and an expense ratio of 1.55 percent that is collected once a year on December 1. Joan and Don Norwood have shares valued at $114,500 on December 1.
What is the amount of the 12b-1 fee this year?
What is the amount they will pay for expenses this year?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, management and related others by exploring similar questions and additional content below.Similar questions
- You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forward
- Assume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardA project does not necessarily have a unique IRR. (Refer to the previous problem for more information on IRR.) Show that a project with the following cash flows has two IRRs: year 1, 20; year 2, 82; year 3, 60; year 4, 2. (Note: It can be shown that if the cash flow of a project changes sign only once, the project is guaranteed to have a unique IRR.)arrow_forwardSix months before its annual convention, the American Medical Association must determine how many rooms to reserve. At this time, the AMA can reserve rooms at a cost of 150 per room. The AMA believes the number of doctors attending the convention will be normally distributed with a mean of 5000 and a standard deviation of 1000. If the number of people attending the convention exceeds the number of rooms reserved, extra rooms must be reserved at a cost of 250 per room. a. Use simulation with @RISK to determine the number of rooms that should be reserved to minimize the expected cost to the AMA. Try possible values from 4100 to 4900 in increments of 100. b. Redo part a for the case where the number attending has a triangular distribution with minimum value 2000, maximum value 7000, and most likely value 5000. Does this change the substantive results from part a?arrow_forward
- Based on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)arrow_forwardIn the financial world, there are many types of complex instruments called derivatives that derive their value from the value of an underlying asset. Consider the following simple derivative. A stocks current price is 80 per share. You purchase a derivative whose value to you becomes known a month from now. Specifically, let P be the price of the stock in a month. If P is between 75 and 85, the derivative is worth nothing to you. If P is less than 75, the derivative results in a loss of 100(75-P) dollars to you. (The factor of 100 is because many derivatives involve 100 shares.) If P is greater than 85, the derivative results in a gain of 100(P-85) dollars to you. Assume that the distribution of the change in the stock price from now to a month from now is normally distributed with mean 1 and standard deviation 8. Let EMV be the expected gain/loss from this derivative. It is a weighted average of all the possible losses and gains, weighted by their likelihoods. (Of course, any loss should be expressed as a negative number. For example, a loss of 1500 should be expressed as -1500.) Unfortunately, this is a difficult probability calculation, but EMV can be estimated by an @RISK simulation. Perform this simulation with at least 1000 iterations. What is your best estimate of EMV?arrow_forwardAn automobile manufacturer is considering whether to introduce a new model called the Racer. The profitability of the Racer depends on the following factors: The fixed cost of developing the Racer is triangularly distributed with parameters 3, 4, and 5, all in billions. Year 1 sales are normally distributed with mean 200,000 and standard deviation 50,000. Year 2 sales are normally distributed with mean equal to actual year 1 sales and standard deviation 50,000. Year 3 sales are normally distributed with mean equal to actual year 2 sales and standard deviation 50,000. The selling price in year 1 is 25,000. The year 2 selling price will be 1.05[year 1 price + 50 (% diff1)] where % diff1 is the number of percentage points by which actual year 1 sales differ from expected year 1 sales. The 1.05 factor accounts for inflation. For example, if the year 1 sales figure is 180,000, which is 10 percentage points below the expected year 1 sales, then the year 2 price will be 1.05[25,000 + 50( 10)] = 25,725. Similarly, the year 3 price will be 1.05[year 2 price + 50(% diff2)] where % diff2 is the percentage by which actual year 2 sales differ from expected year 2 sales. The variable cost in year 1 is triangularly distributed with parameters 10,000, 12,000, and 15,000, and it is assumed to increase by 5% each year. Your goal is to estimate the NPV of the new car during its first three years. Assume that the company is able to produce exactly as many cars as it can sell. Also, assume that cash flows are discounted at 10%. Simulate 1000 trials to estimate the mean and standard deviation of the NPV for the first three years of sales. Also, determine an interval such that you are 95% certain that the NPV of the Racer during its first three years of operation will be within this interval.arrow_forward
- A martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forwardMichelle, age 45, currently makes $95,000. Her wage replacement ratio is determined to be 75 percent. She expects that inflation will average 3 percent for her entire life expectancy. She expects to earn 8 percent on her investments and retire at age 65, possibly living to age 95. She has sent for and received her Social Security benefit statement, which indicated that her Social Security retirement benefit in today’s dollars adjusted for early retirement is $20,000 per year. How much capital does Jordan need to retire at age 65?.arrow_forwardA student who is majoring in accounting has two jobs offers: one from PwC for $80,000 and one for E&Y for $76,000. She just found out that she has also received an offer from her dream company, Deloitte for $72,000. She also heard from friends that another student last year may have received an offer averaging around $90,000. She wants to take the Deloitte offer, but her OB professor tells her that she needs to negotiate with them for a better salary. In this negotiation, what is her BATNA? O a O b. $76,000 $72,000 $90,000 $18,000 (the difference between $90,000 and $72,000) OC O d. Oe. $80,000arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,