Physics for Scientists and Engineers, Volume 2
10th Edition
ISBN: 9781337553582
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 16P
(a)
To determine
The force that John must apply along the handles to just start the wheel over the brick.
(b)
To determine
The components of the force that brick exerts on the wheel just as the wheel begins to lift over the brick.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The
handles make an angle of 0 = 15.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force
of 382 N is exerted at the center of the wheel, which has a radius of 15.0 cm. Assume the brick remains fixed and does not
slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose
the positive x-axis to be pointing to the right.)
(a) What force (in N) must John apply along the handles to just start the wheel over the brick?
N
(b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on
the wheel just as the wheel begins to lift over the brick?
magnitude
KN
direction
clockwise from the -x-axis
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 20.0° with the ground. Due to the weight of
Rachel and the wheelbarrow, a downward force of 407 N is exerted at the center of the wheel, which has a radius of 18.0 cm. Assume the brick remains fixed and does not slide along the ground. Also
assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.)
&
(a) What force (in N) must John apply along the handles to just start the wheel over the brick?
1690.53
X
Your response differs from the correct answer by more than 10%. Double check your calculations. N
(b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick?
magnitude
KN
direction
° clockwise from the -x-axis
Chapter 12 Solutions
Physics for Scientists and Engineers, Volume 2
Ch. 12.1 - Consider the object subject to the two forces of...Ch. 12.1 - Consider the object subject to the three forces in...Ch. 12.2 - A meterstick of uniform density is hung from a...Ch. 12.4 - For the three parts of this Quick Quiz, choose...Ch. 12 - You are building additional storage space in your...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 3PCh. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A uniform beam of length 7.60 m and weight 4.50 ...
Ch. 12 - Prob. 7PCh. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 11PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 16PCh. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - Prob. 26APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 39APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Prob. 44APCh. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - You have been hired as an expert witness in a case...Ch. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform rod of weight Fg and length L is...Ch. 12 - In the What If? section of Example 12.2, let d...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (Fig. P12.15). The handles make an angle of = 15.0 with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 400 N is exerted at the center of the wheel, which has a radius of 20.0 cm. (a) What force must John apply along the handles to just start the wheel over the brick? (b) What is the force (magnitude and direction) that the brick exerts on the wheel just as the wheel begins to lift over the brick? In both parts, assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel.arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forward
- A square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forwardA wheel of inner radius r1 = 15.0 cm and outer radius r2 = 35.0 cm shown in Figure P12.43 is free to rotate about the axle through the origin O. What is the magnitude of the net torque on the wheel due to the three forces shown? FIGURE P12.43arrow_forwardA square plate with sides of length 4.0 m can rotate about an axle passing through its center of mass and perpendicular to the plate as shown in Figure P14.36. There are four forces acting on the plate at different points. The rotational inertia of the plate is 24 kgm2. Is the plate in equilibrium? FIGURE P14.36arrow_forward
- The fishing pole in Figure P10.22 makes an angle of 20.0 with the horizontal. What is the torque exerted by the fish about an axis perpendicular to the page and passing through the anglers hand if the fish pulls on the fishing line with a force F=100N at an angle 37.0 below the horizontal? The force is applied at a point 2.00 m from the anglers hands. Figure P10.22arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forwardAs shown in Figure OQ10.9, a cord is wrapped onto a cylindrical reel mounted on a fixed, frictionless, horizontal axle. When does the reel have a greater magnitude of angular acceleration? (a) When the cord is pulled down with a constant force of 50 N. (b) When an object of weight 50 N is hung from the cord and released. (c) The angular accelerations in parts (a) and (b) are equal. (d) It is impossible to determine. Figure OQ10.9arrow_forward
- A disk with a radius of 4.5 m has a 100-N force applied to its outer edge at two different angles (Fig. P12.55). The disk has arotational inertia of 165 kg m2. a. What is the magnitude of the torque applied to the disk incase 1? b. What is the magnitude of the torque applied to the disk incase 2? c. Assuming the force on the disk is constant in each case,what is the magnitude of the angular acceleration applied tothe disk in each case? d. Which case is a more effective way of spinning the disk?Describe which quantity you are using to determine effectiveness and why you chose that quantity. FIGURE P12.55arrow_forwardA cam of mass M is in the shape of a circular disk of diameter 2R with an off-center circular hole of diameter R is mounted on a uniform cylindrical shaft whose diameter matches that of the hole (Fig. P1 3.78). a. What is the rotational inertia of the cam and shaft around the axis of the shaft? b. What is the rotational kinetic energy of the cam and shaft if the system rotates with angular speed around this axis?arrow_forwardChildren playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning