Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 15RQ
To determine
That how the calibrations of present astronomers are dependent upon the calibrations done by the scientist earlier.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of
the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in
m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Question 4 of 7
A Moving to another question will save this response.
1 6:59
&
backs
Why I got it wrong? Please help me to provide just few summary.
Chapter 12 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 12 - Why is it difficult to specify the dimensions of...Ch. 12 - Why didn’t astronomers before Shapley realize how...Ch. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Prob. 6RQCh. 12 - Prob. 7RQCh. 12 - Prob. 8RQCh. 12 - Prob. 9RQCh. 12 - Prob. 10RQ
Ch. 12 - Prob. 11RQCh. 12 - Prob. 12RQCh. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Prob. 15RQCh. 12 - Prob. 16RQCh. 12 - Prob. 1DQCh. 12 - Prob. 2DQCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - If the Sun is 4.6 billion years old, how many...Ch. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 1LTLCh. 12 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forwardI attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forward
- The Stefan-Boltzmann equation can be used to estimate the size of asteroids. "Sigma," the Stefan-Boltzmann constant, is 5.67 x 10 Watts/m²K. If you want to abbreviate Plus 1.1415 You measure the infrared emission from an asteroid and conclude that it has a temperature of 249 K. Using rader you find the distance, and are then able to use your infrared brightness to determine a luminosity of 7.21E+12 Watts. If you assume the asteroid is roughly spherical, what is its radius in meters? CHECK ANSWERarrow_forwardWhat is a standard candle in the astronomical sense? How do Cepheid variables fit into this and what are some other examples here?arrow_forwardNo need to solve. Just formulate all the equation that can be seen in the diagram. Examples are Bx= B cos (- theta 1) By= B sin (- theta 2 )arrow_forward
- Show work. For the following: A parsec is a distance equal to 3.26 light years. The speed of light is 2.998 x 10°m/s. A nght year is a unit of distance equal to the distance light travels in one year. The brightest star in the night sky is Sirius, (Not the radio station) is 2.63 parsecs away. (1km30.621miles, 365d-1yr) How many miles away is this star?arrow_forwardWhy was the Hipparcos satellite able to make more accurate parallax measurements than ground-based telescopes?arrow_forwardPlease answer the following A) Suppose an object takes 1000 years to orbit the Sun. How many times farther from the Sun is it, when compared with Earth? B) Communications with the spacecraft Alpha using radio waves require 2000 years for the round trip (there and back). This implies that Alpha is how many light years away from Earth?arrow_forward
- Imagine a telescope was placed on the planet Mercury and was used to measure the positions of stars in the sky. Assuming Mercury follows a circular orbit with a semi-major axis = 0.387 AU and a period = 88 days, calculate the maximum %3D stellar aberration that would be detected, expressing your answer in arcseconds. Choose the option below that best matches your answer. Select one: Оа. 100 O b. 25 О с 60 O d. 15 O e. 33arrow_forwardImagine that you are observing the light from a distant star that is located in a galaxy 100 million lightyears away from you. By analysis of the starlight received, you are able to tell that the image we see is of a 10- million-year-old star. You are also able to predict that the star will have a total lifetime of 50 million years, at which point it will end in a catastrophic supernova. a) How old does the star appear to be to us here on Earth now? b) How long will it be before we receive the light from the supernova event? c) Has the supernova already occurred? If so, when did it occur?arrow_forwardThe Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us? answer to three significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax