
Concept explainers
(a)
Interpretation:
The
Concept introduction:
Crystal structure or lattice is the three-dimensional representation of atoms and molecules arranged in a particular manner. The unit cell is the smallest part of the lattice that is repeated in all directions to yield the crystal lattice. There are 3 types of cubic unit cells as follows:
1. The simple cubic unit cell
2. Body-centered unit cell
3. Face-centered unit cell
In the cubic unit cell, atom at the corner is shared by 8 adjacent cells so the contribution of an atom at the corner is
(a)

Answer to Problem 12.99P
The number of atoms in each unit cell is 4.
Explanation of Solution
Atom adopts face-centered cubic unit arrangement.
Face-centered cubic unit cell, 8 atoms are present at the corners of the cell and 6 atoms at the face of the cell. The contribution of an atom present at the corner is
The number of atoms in each unit cell is 4.
(b)
The volume of a unit cell is to be calculated.
Concept introduction:
Crystal structure or lattice is the three-dimensional representation of atoms and molecules arranged in a particular manner. The unit cell is the smallest part of the lattice that is repeated in all directions to yield the crystal lattice. There are 3 types of cubic unit cells as follows:
1. The simple cubic unit cell
2. Body-centered unit cell
3. Face-centered unit cell
In the cubic unit cell, atom at the corner is shared by 8 adjacent cells so the contribution of an atom at the corner is
(b)

Answer to Problem 12.99P
The volume of a unit cell is
Explanation of Solution
The formula to calculate the volume of the unit cell is as follows:
Substitute
The volume of a unit cell is
(c)
The mass of a unit cell is to be calculated.
Concept introduction:
Crystal structure or lattice is the three-dimensional representation of atoms and molecules arranged in a particular manner. The unit cell is the smallest part of the lattice that is repeated in all directions to yield the crystal lattice. There are 3 types of cubic unit cells as follows:
1. The simple cubic unit cell
2. Body-centered unit cell
3. Face-centered unit cell
In the cubic unit cell, atom at the corner is shared by 8 adjacent cells so the contribution of an atom at the corner is
(c)

Answer to Problem 12.99P
The mass of a unit cell is
Explanation of Solution
The formula to calculate the mass of the unit cell is as follows:
Substitute
The mass of a unit cell is
(d)
The approximate
Concept introduction:
Crystal structure or lattice is the three-dimensional representation of atoms and molecules arranged in a particular manner. The unit cell is the smallest part of the lattice that is repeated in all directions to yield the crystal lattice. There are 3 types of cubic unit cells as follows:
1. The simple cubic unit cell
2. Body-centered unit cell
3. Face-centered unit cell
In the cubic unit cell, atom at the corner is shared by 8 adjacent cells so the contribution of an atom at the corner is
The conversion factor to convert
(d)

Answer to Problem 12.99P
The approximate atomic mass for the element is
Explanation of Solution
One unit cell consists of 4 atoms.
The formula to calculate the mass of an atom is as follows:
Substitute
The approximate atomic mass for the element is
Want to see more full solutions like this?
Chapter 12 Solutions
CONNECT ACCESS CARD FOR CHEMISTRY: MOLECULAR NATURE OF MATTER AND CHANGE
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





