
Interpretation:
The equivalence volume of
Concept introduction:
Volumetric principle:
The volume and concentration of unknown solution is determined by it is titrate with known volume and concentration solution.
The volume and concentration of unknown solution is required equivalent volume and concentration of known solution in the volumetric titration.
Where,
Degree of dissociation:
The ratio of mole of reactant that underwent to dissociating to mole of initial reactant is known as degree of dissociation.
In EDTA the degree of dissociation is,
If pH is fixed, the degree of dissociation
Where,

Answer to Problem 12.7P
The volume of solution at equivalent point is
The conditional formation value is
Explanation of Solution
To determine the volume of solution at equivalent point in
Given,
Volume of known solution is
Concentration of known solution is
Concentration of
According to the volumetric principle,
The given values are plugged in above equation to give a volume of solution at equivalent point in
To give the degree of dissociation
Given,
From the standard data table the
The conditional formation value is
The equivalence volume of
(a)
Interpretation:
The
Conditional Formation Constant:
In the reaction of metal with ligand, the equilibrium constant is called as formation constant or the stability constant.
The formation constant for above complex reaction is,
Where,
If pH is constant, the degree of dissociation
Where,
(a)

Answer to Problem 12.7P
The
Explanation of Solution
To determine the
Given,
Equivalent point in
Volume of different is
The volume difference and concentration are plugged in above equation to give
The
(b)
Interpretation:
At the equivalent point, the
Concept Information:
Degree of dissociation:
The ratio of mole of reactant that underwent to dissociating to mole of initial reactant is known as degree of dissociation.
In EDTA the degree of dissociation is,
If pH is fixed, the degree of dissociation
Where,
(b)

Explanation of Solution
To calculate the
The equilibrium reaction is,
The concentration of
From the above calculation the
Hence, the
The
The
At the equivalent point, the
(c)
Interpretation:
At
Concept Information:
Conditional Formation Constant:
In the reaction of metal with ligand, the equilibrium constant is called as formation constant or the stability constant.
The formation constant for above complex reaction is,
Where,
If pH is constant, the degree of dissociation
Where,
(c)

Answer to Problem 12.7P
At
Explanation of Solution
To calculate the
Given,
To calculate the
The equilibrium reaction is,
The concentration of
Formal concentration of EDTA is,
The
The calculated EDTA concentration and
At
Want to see more full solutions like this?
Chapter 12 Solutions
Quantitative Chemical Analysis 9e And Sapling Advanced Single Course For Analytical Chemistry (access Card)
- 11 Organic Chemistry Organic Nomenclature Practice Name/Functional Group n-butane Formula Structural Formula (1) C4tt10 H3C C- (2) CH3CH2CH2 CH 3 H₂ -CH3 Н2 name & functional group (1) and (2) OH H₁₂C Н2 name only (1) and (2) name only (1) and (2) H₁C - = - CH₂ Н2 HC=C-C CH3arrow_forwardUnder aqueous basic conditions, nitriles will react to form a neutral organic intermediate 1 that has an N atom in it first, and then they will continue to react to form the final product 2: NC H₂O он- H₂O 1 2 OH Draw the missing intermediate 1 and the final product 2 in the box below. You can draw the two structures in any arrangement you like. Click and drag to start drawing a structure.arrow_forwardAssign these COSY Spectrumarrow_forward
- Assign these C-NMR and H-NMR Spectrumarrow_forwardPredict the product of this organic reaction: IZ + HO i P+H₂O Specifically, in the drawing area below draw the skeletal ("line") structure of P. If there is no reasonable possibility for P, check the No answer box under the drawing area. No Answer Click and drag to start drawing a structure. ☐ :arrow_forwardPredict the products of this organic reaction: 0 O ----- A + KOH ? CH3-CH2-C-O-CH2-C-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. X ⑤ èarrow_forward
- Predict the products of this organic reaction: O CH3 + H2O + HCI A A? CH3-CH2-C-N-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. If there's more than one product, draw them in any arrangement you like, so long as they aren't touching. If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click anywhere to draw the first atom of your structure.arrow_forwardWhat is the missing reactant in this organic reaction? R+ HO-C-CH2-CH3 0= CH3 CH3 —CH, C−NH—CH CH3 + H₂O Specifically, in the drawing area below draw the condensed structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. Note for advanced students: you may assume no products other than those shown above are formed. No Answer Click anywhere to draw the first atom of your structure. €arrow_forward个 CHEM&131 9267 - $25 - Intro to Mail - Hutchison, Allison (Student x Aktiv Learnin https://app.aktiv.com Draw the product of the reaction shown below. Ignore inorganic byproducts. + Na2Cr2O7 Acetone, H2SO4 Type here to search Dryng OH W Prarrow_forward
- Predict the products of this organic reaction: OH + NaOH A? Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click and drag to start drawing a structure. ✓ Sarrow_forwardPredict the products of this organic reaction: CH3-C-O-CH2-CH2-C-CH3 + H₂O ? A Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. :☐ darrow_forwardDE d. Draw an arrow pushing mechanism for the following IN O CI N fo 人 P Polle DELL prt sc home end ins F5 F6 F7 F8 F9 F10 F11 F12arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





