
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.7E
A hollow cylindrical copper pipe is 1.50 m long and has an outside diameter of 3.50 cm and an inside diameter of 2.50 cm. How much does it weigh?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Imagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.
If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexample
A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their acceleration
Chapter 12 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 12.1 - Rank the following objects in order from highest...Ch. 12.2 - Mercury is less dense at high temperatures than at...Ch. 12.3 - You place a container of seawater on a scale and...Ch. 12.4 - A maintenance crew is working on a section of a...Ch. 12.5 - Which is the most accurate statement of Bernoullis...Ch. 12.6 - How much more thumb pressure must a nurse use to...Ch. 12 - A cube of oak wood with very smooth faces normally...Ch. 12 - A rubber hose is attached to a funnel, and the...Ch. 12 - Comparing Example 12.1 (Section 12.1) and Example...Ch. 12 - Prob. 12.4DQ
Ch. 12 - You have probably noticed that the lower the tire...Ch. 12 - In hot-air ballooning, a large balloon is filled...Ch. 12 - In describing the size of a large ship, one uses...Ch. 12 - You drop a solid sphere of aluminum in a bucket of...Ch. 12 - A rigid, lighter-than-air dirigible filled with...Ch. 12 - Which has a greater buoyant force on it: a 25-cm3...Ch. 12 - The purity of gold can be tested by weighing it in...Ch. 12 - During the Great Mississippi Flood of 1993, the...Ch. 12 - A cargo ship travels from the Atlantic Ocean (salt...Ch. 12 - You push a piece of wood under the surface of a...Ch. 12 - An old question is Which weighs more, a pound of...Ch. 12 - Suppose the door of a room makes an airtight but...Ch. 12 - At a certain depth in an incompressible liquid,...Ch. 12 - A piece of iron is glued to the top of a block of...Ch. 12 - You take an empty glass jar and push it into a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - You are floating in a canoe in the middle of a...Ch. 12 - Two identical buckets are filled to the brim with...Ch. 12 - An ice cube floats in a glass of water. When the...Ch. 12 - A helium-filled balloon is tied to a light string...Ch. 12 - If the velocity at each point in space in...Ch. 12 - In a store-window vacuum cleaner display, a...Ch. 12 - A tornado consists of a rapidly whirling air...Ch. 12 - Airports at high elevations have longer runways...Ch. 12 - When a smooth-flowing stream of water comes out of...Ch. 12 - Prob. 12.30DQCh. 12 - Prob. 12.1ECh. 12 - A cube 5.0 cm on each side is made of a metal...Ch. 12 - Prob. 12.3ECh. 12 - Gold Brick. You win the lottery and decide to...Ch. 12 - A uniform lead sphere and a uniform aluminum...Ch. 12 - Prob. 12.6ECh. 12 - A hollow cylindrical copper pipe is 1.50 m long...Ch. 12 - Prob. 12.8ECh. 12 - Prob. 12.9ECh. 12 - BIO (a) Calculate the difference in blood pressure...Ch. 12 - BIO In intravenous feeding, a needle is inserted...Ch. 12 - A barrel contains a 0.120-m layer of oil floating...Ch. 12 - BIO Standing on Your Head. (a) What is the...Ch. 12 - You are designing a diving bell to withstand the...Ch. 12 - BIO Ear Damage from Diving. If the force on the...Ch. 12 - The liquid in the open-tube manometer in Fig....Ch. 12 - BIO There is a maximum depth at which a diver can...Ch. 12 - BIO The lower end of a long plastic straw is...Ch. 12 - An electrical short cuts off all power to a...Ch. 12 - A tall cylinder with a cross-sectional area 12.0...Ch. 12 - A cylindrical disk of wood weighing 45.0 N and...Ch. 12 - A closed container is partially filled with water....Ch. 12 - Hydraulic Lift I. For the hydraulic lift shown in...Ch. 12 - Hydraulic Lift II. The piston of a hydraulic...Ch. 12 - Exploring Venus. The surface pressure on Venus is...Ch. 12 - A rock has mass 1.80 kg. When the rock is...Ch. 12 - A 950-kg cylindrical can buoy floats vertically in...Ch. 12 - A slab of ice floats on a freshwater lake. What...Ch. 12 - An ore sample weighs 17.50 N in air. When the...Ch. 12 - You are preparing some apparatus for a visit to a...Ch. 12 - A rock with density 1200 kg/m3 is suspended from...Ch. 12 - A hollow plastic sphere is held below the surface...Ch. 12 - A cubical block of wood, 10.0 cm on a side, floats...Ch. 12 - A solid aluminum ingot weighs 89 N in air. (a)...Ch. 12 - A rock is suspended by a light string. When the...Ch. 12 - Water runs into a fountain, filling all the pipes,...Ch. 12 - A shower head has 20 circular openings, each with...Ch. 12 - Water is flowing in a pipe with a varying...Ch. 12 - Water is flowing in a pipe with a circular cross...Ch. 12 - Home Repair. You need to extend a...Ch. 12 - A sealed tank containing seawater to a height of...Ch. 12 - Prob. 12.42ECh. 12 - What gauge pressure is required in the city water...Ch. 12 - A small circular hole 6.00 mm in diameter is cut...Ch. 12 - At a certain point in a horizontal pipeline, the...Ch. 12 - At one point in a pipeline the waters speed is...Ch. 12 - A golf course sprinkler system discharges water...Ch. 12 - A soft drink (mostly water) flows in a pipe at a...Ch. 12 - Prob. 12.49ECh. 12 - A pressure difference of 6.00 104 Pa is required...Ch. 12 - In a lecture demonstration, a professor pulls...Ch. 12 - CP The deepest point known in any of the earths...Ch. 12 - CALC A swimming pool is 5.0 m long, 4.0 m wide,...Ch. 12 - BIO Fish Navigation. (a) As you can tell by...Ch. 12 - CP CALC The upper edge of a gate in a dam runs...Ch. 12 - Ballooning on Mars. It has been proposed that we...Ch. 12 - A 0.180-kg cube of ice (frozen water) is floating...Ch. 12 - A narrow. U-shaped glass tube with open ends is...Ch. 12 - A U-shaped tube open to the air at both ends...Ch. 12 - CALC The Great Molasses Flood. On the afternoon of...Ch. 12 - A large, 40.0-kg cubical block of wood with...Ch. 12 - A hot-air balloon has a volume of 2200 m3. The...Ch. 12 - Prob. 12.63PCh. 12 - A single ice cube with mass 16.4 g floats in a...Ch. 12 - Advertisements for a certain small car claim that...Ch. 12 - A piece of wood is 0.600 m long, 0.250 in wide,...Ch. 12 - The densities of air, helium, and hydrogen (at =...Ch. 12 - When an open-faced boat has a mass of 5750 kg,...Ch. 12 - Prob. 12.69PCh. 12 - In seawater, a life preserver with a volume of...Ch. 12 - CALC A closed and elevated vertical cylindrical...Ch. 12 - Prob. 12.72PCh. 12 - A plastic ball has radius 12.0 cm and floats in...Ch. 12 - Assume that crude oil from a supertanker has...Ch. 12 - Prob. 12.75PCh. 12 - A barge is in a rectangular lock on a freshwater...Ch. 12 - CP Water stands at a depth H in a large, open tank...Ch. 12 - Your uncle is in the below-deck galley of his boat...Ch. 12 - Prob. 12.79PCh. 12 - A cylindrical bucket, open at the top, is 25.0 cm...Ch. 12 - Prob. 12.81PCh. 12 - Prob. 12.82PCh. 12 - Two very large open tanks A and F (Fig. P12.83)...Ch. 12 - A liquid flowing from a vertical pipe has a...Ch. 12 - DATA The density values in Table 12.1 are listed...Ch. 12 - DATA You have a bucket containing; in unknown...Ch. 12 - DATA The Environmental Protection Agency is...Ch. 12 - A siphon (Fig. P12.88) is a convenient device for...Ch. 12 - For the situation shown, the tissues in the...Ch. 12 - The maximum force the muscles of the diaphragm can...Ch. 12 - How does the force the diaphragm experiences due...Ch. 12 - If the elephant were to snorkel in salt water,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Compare each of the mechanisms listed here with the mechanism for each of the two parts of the acid-catalyzed h...
Organic Chemistry (8th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forward
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Gas density and PV=nRT, the ideal gas law; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=RFF1MIQDdds;License: Standard YouTube License, CC-BY
Weight, Force, Mass & Gravity | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=U78NOo-oxOY;License: Standard Youtube License