Concept explainers
A barge is in a rectangular lock on a freshwater river. The lock is 60.0 m long and 20.0 m wide, and the steel doors on each end are closed. With the barge floating in the lock, a 2.50 × 106 N load of scrap metal is put onto the barge. The metal has density 7200 kg/m3. (a) When the load of scrap metal, initially on the bank, is placed onto the barge, what vertical distance does the water in the lock rise? (b) The scrap metal is now pushed overboard into the water. Does the water level in the lock rise, fall, or remain the same? If it rises or falls, by what vertical distance does it change?
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
UNIVERSITY PHYSICS UCI PKG
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
College Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
College Physics (10th Edition)
Applied Physics (11th Edition)
The Cosmic Perspective Fundamentals (2nd Edition)
- (a) A wry powerful vacuum cleaner has a hose 2.86 cm in diameter. With the end of the hose placed perpendicularly on the flat face of a brick, what is the weight of the heaviest brick that the cleaner can lift? (b) What If? An octopus uses one sucker of diameter 2.86 cm on each of the two shells of a clam in an attempt to pull the shells apart. Find the greatest force the octopus can exert on a clamshell in salt water 32.3 m deep.arrow_forwardA horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardA 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forward
- A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardA fluid flows through a horizontal pipe that widens, making a 45 angle with the y axis (Fig. P15.48). The thin part of the pipe has radius R, and the fluids speed in the thin part of the pipe is v0. The origin of the coordinate system is at the point where the pipe begins to widen. The pipes cross section is circular. a. Find an expression for the speed v(x) of the fluid as a function of position for x 0 b. Plot your result: v(x) versus x. FIGURE P15.48 (a) The continuity equation (Eq. 15.21) relates the cross-sectional area to the speed of the fluid traveling through the pipe. A0v0 = A(x)v(x) v(x)=A0v0A(x) The cross sectional area is the area of a circle whose radius is y(x). The widening pan of the pipe is a straight line with slope of 1 and intercept y(0) = R. y(x) = mx + b = x + R A(x) = [y(x)]2 = (x + R)2 Plug this into the formula for the velocity. Plug this into the formula for the velocity. v(x)=A0v0(x+R)2arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forward
- Review. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardA 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward
- A wooden block floats in water, and a steel object is attached to the bottom of the block by a string as in Figure OQ15.1. If the block remains floating, which of the following statements are valid? (Choose all correct statements.) (a) The buoyant force on the steel object is equal to its weight. (b) The buoyant force on the block is equal to its weight. (c) The tension in the string is equal to the weight of the steel object. (d) The tension in the string is less than the weight of the steel object. (e) The buoyant force on the block is equal to the volume of water it displaces.arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forwardA garden hose with a diameter of 2.0 cm is used to fill a bucket, which has a volume of 0.10 cubic meters. It takes 1.2 minutes to fill. An adjustable nozzle is attached to the hose to decrease the diameter of the opening, which increases the speed of the water. The hose is held level to the ground at a height of 1.0 meters and the diameter is decreased until a flower bed 3.0 meters away is reached. (a) What is the volume flow rate of the through the nozzle when the diameter 2.0 cm? (b) What does is the speed of coming out of the hose? (c) What does the speed of the water coming out of the hose need to be to reach the flower bed 3.0 meters away? (d) What is be diameter of nozzle needed to reach be flower bed?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning