Physics for Scientists and Engineers
Physics for Scientists and Engineers
9th Edition
ISBN: 9781133947271
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.66CP

In the What If? section of Example 12.2, let d represent the distance in meters between the person and the hinge at the left end of the beam. (a) Show that the cable tension is given by T = 93.9d + 125, with T in newtons. (b) Show that the direction angle θ of the hinge force is described by

tan θ = ( 32 3 d + 4 1 ) tan 53.0 °

(c) Show that the magnitude of the hinge force is given by

R = 8.82 × 10 3 d 2 9.65 × 10 4 d + 4.96 × 10 5

(d) Describe how the changes in T, θ, and R as d increases differ from one another.

(a)

Expert Solution
Check Mark
To determine

The cable tension is T=93.9d+125.

Answer to Problem 12.66CP

The cable tension is given by, T=93.9d+125.

Explanation of Solution

The weight of the person is 600N, the weight of the beam is 200N, the length of the beam is 8m, cables makes an angle of 53°, distance between the person and hinged support is d, the tension in the rope is T.

The diagram for the given condition is shown below.

Physics for Scientists and Engineers, Chapter 12, Problem 12.66CP

Figure (1)

Apply the rotational equilibrium equation and take the torque about hinge support.

    (Tsinϕ)×lwp×dwb×l2=0        (1)

Here, wp is the weight of the person, wb is the weight of the beam, l is the length of the beam an d ϕ is the cable angle.

Rearrange the equation (1) for T.

    T=wp×d+wb×l2l×sinϕ        (2)

Substitute, 600N for wp, 200N for wb, 8m for l and 53° for ϕ in equation (2) to find the expression for the tension.

    T=600N×d+200N×828×sin53T=93.9d+125

Conculasion:

Therefore, the cable tension will be T=93.9d+125.

(b)

Expert Solution
Check Mark
To determine

The direction angle is tanθ=(323d+41)tan53°

Answer to Problem 12.66CP

The direction angle will be tanθ=(323d+41)tan53°.

Explanation of Solution

Apply the equilibrium condition for the horizontal forces.

    Fx=0RcosθTcosϕ=0Rcosθ=Tcosϕ        (3)

Apply the equilibrium equation for the vertical forces.

    Fy=0Rsinθ+Tsinϕwpwb=0Rsinθ=wp+wbTsinϕ        (4)

Here, R is the hinge reaction and θ is the angle makes by the hinge reaction.

Divide equation (4) by equation (3).

    RsinθRcosθ=wp+wbTsinϕTcosϕtanθ=(wp+wbTsinϕTcosϕ)×tanϕtanϕtanθ=(wp+wbTsinϕTcosϕ)tanϕtanθ=(wp+wbTsinϕ1)tanϕ        (5)

Substitute, 600N for wp, 200N for wb, (93.9d+125)N for T  and 53° for ϕ in equation (5) to find the reaction angle.

    tanθ=(600N+200N(93.9d+125)N×sin53°1)tan53°tanθ=(323d+41)tan53°

Conculasion:

Therefore, The direction angle will be tanθ=(323d+41)tan53°

(c)

Expert Solution
Check Mark
To determine

The magnitude of the hinge force is R=8.82×105d29.65×104d+4.96×105 .

Answer to Problem 12.66CP

The magnitude of the hinge force will be R=8.82×105d29.65×104d+4.96×105.

Explanation of Solution

Square on both side of equation(2) and equation(3) and then add them.

    R2(cos2θ+sin2θ)=T2cos2ϕ+(wp+wbTsinϕ)2R=T2+(wp+wb)22Tsinϕ(wp+wb)        (6)

Substitute, 600N for wp, 200N for wb, (93.9d+125)N for T  and 53° for ϕ in equation (6) to find the reaction.

    R=(93.9d+125)2N+(600N+200N)22(93.9d+125)N×sin53°(600N+200N)=8.82×105d29.65×104d+4.96×105

Conclusion:

Therefore, the magnitude of the hinge force is R=8.82×105d29.65×104d+4.96×105.

(d)

Expert Solution
Check Mark
To determine

The changes in T, θ and R on increasing the distance d.

Answer to Problem 12.66CP

T and R increases on increases the distance d and θ decreases when the distance d increases.

Explanation of Solution

T and R is the directely proportional to the distance d. since when d is increases then T and R is increases. But angle θ is inversely proportional to the distance d so when the d is increases then the magnitude of the angle is decreases.

Conclusion:

Therefore, T and R increases on increases the distance d and θ decreases.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 12 Solutions

Physics for Scientists and Engineers

Ch. 12 - Prob. 12.7OQCh. 12 - In analyzing the equilibrium of a flat, rigid...Ch. 12 - A certain wire, 3 m long, stretches by 1.2 mm when...Ch. 12 - The center of gravity of an ax is on the...Ch. 12 - A ladder stands on the ground, leaning against a...Ch. 12 - Prob. 12.2CQCh. 12 - (a) Give an example in which the net force acting...Ch. 12 - Prob. 12.4CQCh. 12 - Prob. 12.5CQCh. 12 - A girl has a large, docile dog she wishes to weigh...Ch. 12 - Prob. 12.7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - What are the necessary conditions for equilibrium...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - A vaulter holds a 29.4-N pole in equilibrium by...Ch. 12 - A 15.0-in uniform ladder weighing 500 N rests...Ch. 12 - A uniform ladder of length L.and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 12.19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 12.22PCh. 12 - One end of a uniform 4.00-m-long rod of weight Fg...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - A 200-kg load is hung on a wire of length 4.00m,...Ch. 12 - A walkway suspended across a hotel lobby is...Ch. 12 - Review. A 2.00-m-long cylindrical steel wire with...Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 12.39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 12.41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - Prob. 12.47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 12.52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 12.55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - (a) Estimate the force with which a karate master...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 12.62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform pole is propped between the floor and...Ch. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Figure P12.67 shows a vertical force applied...Ch. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY