When a circus performer performing on the rings executes the iron cross , he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnast’s feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (“lats”) and the pectoralis major (“pecs”). One of the rings exerts an upward force F → k on a hand as show n in Figure P12.37b. The force F → s , is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force F → m on the arm. (a) Using the information in the figure, find the magnitude of the force F → m for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45° angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37
When a circus performer performing on the rings executes the iron cross , he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnast’s feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (“lats”) and the pectoralis major (“pecs”). One of the rings exerts an upward force F → k on a hand as show n in Figure P12.37b. The force F → s , is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force F → m on the arm. (a) Using the information in the figure, find the magnitude of the force F → m for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45° angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37
When a circus performer performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnast’s feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (“lats”) and the pectoralis major (“pecs”). One of the rings exerts an upward force
F
→
k
on a hand as show n in Figure P12.37b. The force
F
→
s
, is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force
F
→
m
on the arm. (a) Using the information in the figure, find the magnitude of the force
F
→
m
for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45° angle with the horizontal rather than being horizontal. Why is this position easier for the performer?
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.