Ballooning on Mars. It has been proposed that we could explore Mars using inflated balloons to hover just above the surface. The buoyancy of the atmosphere would keep the balloon aloft. The density of the Martian atmosphere is 0.0154 kg/m 3 (although this varies with temperature). Suppose we construct these balloons of a thin but tough plastic having a density such that each square meter has a mass of 5.00 g. We inflate them with a very light gas whose mass we can ignore, (a) What should be the radius and mass of these balloons so they just hover above the surface of Mars? (b) If we released one of the balloons from part (a) on earth, where the atmospheric density is 1.20kg/m, what would be its initial acceleration assuming it was the same size as on Mars? Would it go up or down? (c) If on Mars these balloons have five times the radius found in part (a), how heavy an instrument package could they carry?
Ballooning on Mars. It has been proposed that we could explore Mars using inflated balloons to hover just above the surface. The buoyancy of the atmosphere would keep the balloon aloft. The density of the Martian atmosphere is 0.0154 kg/m 3 (although this varies with temperature). Suppose we construct these balloons of a thin but tough plastic having a density such that each square meter has a mass of 5.00 g. We inflate them with a very light gas whose mass we can ignore, (a) What should be the radius and mass of these balloons so they just hover above the surface of Mars? (b) If we released one of the balloons from part (a) on earth, where the atmospheric density is 1.20kg/m, what would be its initial acceleration assuming it was the same size as on Mars? Would it go up or down? (c) If on Mars these balloons have five times the radius found in part (a), how heavy an instrument package could they carry?
Ballooning on Mars. It has been proposed that we could explore Mars using inflated balloons to hover just above the surface. The buoyancy of the atmosphere would keep the balloon aloft. The density of the Martian atmosphere is 0.0154 kg/m3 (although this varies with temperature). Suppose we construct these balloons of a thin but tough plastic having a density such that each square meter has a mass of 5.00 g. We inflate them with a very light gas whose mass we can ignore, (a) What should be the radius and mass of these balloons so they just hover above the surface of Mars? (b) If we released one of the balloons from part (a) on earth, where the atmospheric density is 1.20kg/m, what would be its initial acceleration assuming it was the same size as on Mars? Would it go up or down? (c) If on Mars these balloons have five times the radius found in part (a), how heavy an instrument package could they carry?
Using the 95% Margin of Error (Confidence Level) values for the Experimental Acceleration due to Gravity determine the % error.= (abs value(A-E)/A)x Show calculations. MOE +- 1.84 m/s^2 --> interval 8.89,12.57 m/s^2
4. In the figure below what is the value of the angle 0?
A
30
PLEASE help with the experimental setup for this theory because i am so confused.
Chapter 12 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.