(a)
Interpretation:
The substance among the following pair that has the higher boiling point is to be identified.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The boiling point of the liquid is defined as the temperature at which the liquid and gas are in equilibrium and the pressure is
(b)
Interpretation:
The substance among the following pair that has the higher boiling point is to be identified.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The boiling point of the liquid is defined as the temperature at which the liquid and gas are in equilibrium and the pressure is
(c)
Interpretation:
The substance among the given pair that has the higher boiling point is to be identified.
Concept introduction:
Intermolecular forces operate between the molecules so changes with change in the phase and effects with physical properties of the substance. In intermolecular forces, the bond is formed between two molecules with partial charges that are present relatively far away from each other. The types of intermolecular forces are as follows:
1. Ion-dipole: Ion-dipole forces are the attractive forces that exist between an ion and a polar molecule.
2. Hydrogen bond: Hydrogen bonding is the attractive forces that exist between the molecule with a hydrogen atom bonded to an electronegative atom like fluorine, nitrogen, and oxygen of one molecule and an electronegative atom of another molecule.
3. Dipole-dipole: Dipole-dipole is the attractive forces that exist between two polar molecules that have a permanent dipole.
4. Ion-induced dipole: Ion-induced dipole is the attractive forces that exist between the ion and a nonpolar molecule.
5. Dipole-induced dipole: Dipole-induced dipole is the attractive forces that exist between a polar and a nonpolar molecule.
6. Dispersion forces: In dispersion forces, a temporary dipole is generated on one molecule that further induces a temporary dipole on the molecule adjacent to it. The temporary dipole results in the attraction between opposite charges and dispersion forces exist in the molecule. All the atoms and molecules exhibit dispersion forces.
The boiling point of the liquid is defined as the temperature at which the liquid and gas are in equilibrium and the pressure is

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER AND
- For a particular hypothetical reaction, A+B →2C, the value of AG° is -125 kJ/mol. What is the value of AG for this reaction at 35°C when [A] = 0.10 M, [B] = 0.05 M, and [C] = 2.0 × 10¹ M?arrow_forwardIn an experiment, 74.3 g of metallic copper was heated to 100.0°C and then quickly dropped into 200.0 mL of water in a calorimeter. The heat capacity of the calorimeter with the water was 875 J/°C. The initial temperature of the calorimeter was 27.5°C, and the final temperature after addition of the metal was 29.8°C. What is the value of the molar heat capacity of copper?arrow_forwardThe Haber-Bosch process permits the direct conversion of molecular nitrogen to ammonia, which can be used in large-scale fertilizer production. Given the balanced Haber-Bosch reaction and using the bond energies in the table below, estimate the enthalpy change associated with the reaction. N2(g) + 3H2(g) → 2NH3(g) Bond N=N N = N Energy (kJ/mol) 941 418 N-N H-H N-H 163 435 388arrow_forward
- Benzoic acid is used to determine the heat capacity of bomb calorimeters because it can be obtained in pure form and its energy of combustion is known very accurately (−26.43 kJ/g). Determine the heat capacity of a calorimeter that had a temperature increase of 9.199°C when 3.500 g of benzoic acid was used.arrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 2N2H4(g) + 2NO2(g) → 3N2(g) + 4H2O(g) AHrxn ? kJ Substance AH in kJ/mol N2H4(g) +95.4 NO2(g) +33.1 H2O(g) -241.8arrow_forwardIf 7.3 kJ of energy are required to change the temperature of water from 5.0 to 70.0, what was the volume of water? (cs = 4.184 J/(g ⋅ ), d = 1.00 g/mL)arrow_forward
- BALANCE CHEMICAL REACTIONarrow_forwardPredict the product(s) of the following reactions. If no reaction, write "NR". a) Cl₂ FeCl3 e) HNO3 H2SO4 b) NO2 CI. HNO3 f) Br Br2 OH H2SO4 HO3S. FeBr3 c) Cl2 g) FeCl3 F d) O₂N Br2 FeBr3 O₂N OH HNO3 CH3 H2SO4arrow_forwardulating the pH salt solution Calculate the pH at 25 °C of a 0.75M solution of anilinium chloride (C6H5NH3C1). Note that aniline (C6H5NH2) is a weak base with a pK of 4.87. Round your answer to 1 decimal place. pH = ☐ ☑ ⑤ ? olo 18 Ararrow_forward
- I apologize, but the app is not allowing me to post the other 4 pictures of the thermodynamics chart. But I believe the values are universal. Please help!arrow_forwardCalculating the pH of a salt solution Calculate the pH at 25 °C of a 0.29M solution of potassium butanoate (KC3H,CO2). Note that butanoic acid (HC3H,CO2) is a weak acid with a pKa of 4.82. Round your answer to 1 decimal place. pH = -0 Х olo 18 Ararrow_forward: At a certain temperature, the equilibrium constant K for the following reaction is 1.58 × 10-12 N2(g) + O2(g) = 2 NO(g) Use this information to complete the following table. Suppose a 38. L reaction vessel is filled with 0.93 mol of N2 and 0.93 mol of O2. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little N2 and O2. There will be very little NO. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 NO(g) N2(9)+02(9) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 N2(9)+302(g) 6 NO(g) Neither of the above is true. K = ☐ K = ☐ ☐ X10 Х D ? 000 18 Ar Barrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





