Concept explainers
Interpretation:
The edge length of unit cell of Europium crystal lattice has to be calculated.
Concept Introduction:
In packing of atoms in a crystal structure, the atoms are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing forms two types of lattices – body – centered lattice and face – centered lattice.
In body-centered cubic unit cell, each of the six corners is occupied by every single atom. Center of the cube is occupied by one atom. Each atom in the corner is shared by eight unit cells and a single atom in the center of the cube remains unshared. Thus the number of atoms per unit cell in BCC unit cell is,
![Check Mark](/static/check-mark.png)
Answer to Problem 12.48QP
The edge length of unit cell of Europium is calculated as
Explanation of Solution
Record the given data.
Density of Europium is given which is related to mass and volume by the following equation
Calculate the mass of unit cell of Europium.
Each unit cell contains 2 Europium atoms. Therefore two times the average mass of one Europium atom gives mass of a unit cell of Europium.
Calculate the volume of unit cell of Ti.
Density of
Determine the edge length of unit cell of
Volume of the bcc unit cell of Europium is calculated in the previous step. Cube root of the volume of a bcc unit cell, gives the edge length of bcc unit cell of Europium.
The edge length of the unit cell of Europium was calculated.
Want to see more full solutions like this?
Chapter 12 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- In general, which is more polar, the stationary phase or the mobile phase? The stationary phase is always more polar The mobile phase is always more polar It depends on our choices for both stationary and mobile phase Their polarity doesn't really matter so we never consider itarrow_forwardPlease helparrow_forwardDraw the mechanism of aspirin synthesis in an basic medium and in a neutral medium, showing the attacks and the process for the formation of the product.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)