
(a)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(a)

Explanation of Solution
(b)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(b)

Explanation of Solution
Boron is capable of forming repeated, continuous covalent bonds. Thus in
(c)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(c)

Explanation of Solution
(d)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(d)

Explanation of Solution
In
The electronegative value of Potassium and Bromine are quite different with respect to each other. Potassium is highly electropositive and capable of forming positively charged ions and Bromine is electronegative element and forms negatively charged ion. the ions of opposite charges held together by ionic bond. Hence,
(e)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(e)

Explanation of Solution
Magnesium is a highly electropositive metal. it forms dipositive ion by losing its two valence electrons. Thus it forms metallic solids in which it exists as numerous
(f)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(f)

Explanation of Solution
Silicon is capable of forming repeated, continuous covalent bonds . Thus
(g)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(g)

Explanation of Solution
The electronegative value of Lithium and Chlorine are quite different with respect to each other. Lithium is highly electropositive and capable of forming positively charged ions and Chlorine is highly electronegative element and forms negatively charged ion. the ions of opposite charges held together by ionic bond. Hence,
(h)
Interpretation:
From the given compounds, ionic, metallic ,molecular solids and covalent solids have to be identified.
Concept Introduction:
Ionic solids constitute of ions of opposite charges. Molecular solids are formed by covalent molecules which are either polar or non-polar. Covalent solids are formed by atoms of same non-metallic elements and non-polar molecules. The atoms that are capable of forming repeated chain-like bonding form covalent solids. The repetitive bonding results in three dimensional macro structures. Metallic solids are composed of metal atoms in which they exist as positively charged ions amidst of pool of electrons. The pool of electrons are nothing but the electrons lost by the metal atoms and they are delocalized in the entire crystal lattice.
(h)

Explanation of Solution
Chromium is a electropositive metal. It forms positive ion by losing its two valence electrons. Thus it forms metallic solids in which it exists as numerous ions amidst of pool of electrons.
From the given compounds, the Ionic solids are –
Covalent solids are –
Molecular solids are –
Metallic solids are -
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry: Atoms First V1
- Another standard reference electrode is the standard calomel electrode: Hg2Cl2(s) (calomel) + 2e2 Hg() +2 Cl(aq) This electrode is usually constructed with saturated KCI to keep the Cl- concentration constant (similar to what we discussed with the Ag-AgCl electrode). Under these conditions the potential of this half-cell is 0.241 V. A measurement was taken by dipping a Cu wire and a saturated calomel electrode into a CuSO4 solution: saturated calomel electrode potentiometer copper wire CuSO4 a) Write the half reaction for the Cu electrode. b) Write the Nernst equation for the Cu electrode, which will include [Cu2+] c) If the voltage on the potentiometer reads 0.068 V, solve for [Cu²+].arrow_forward2. (Part B). Identify a sequence of FGI that prepares the Synthesis Target 2,4-dimethoxy- pentane. All carbons in the Synthesis Target must start as carbons in either ethyne, propyne or methanol. Hint: use your analysis of Product carbons' origins (Part A) to identify possible structure(s) of a precursor that can be converted to the Synthesis Target using one FGI. All carbons in the Synthesis Target must start as carbons in one of the three compounds below. H = -H H = -Me ethyne propyne Synthesis Target 2,4-dimethoxypentane MeOH methanol OMe OMe MeO. OMe C₂H₁₂O₂ Product carbons' origins Draw a box around product C's that came from A1. Draw a dashed box around product C's that came from B1.arrow_forwardDraw the skeletal ("line") structure of the smallest organic molecule that produces potassium 3-hydroxypropanoate when reacted with KOH. Click and drag to start drawing a structure. Sarrow_forward
- draw skeletal structures for the minor products of the reaction.arrow_forward1. Provide missing starting materials, reagents, products. If a product cannot be made, write NP (not possible) in the starting material box. C7H12O Ph HO H 1) 03-78 C 2) Me₂S + Ph .H OH + 2nd stereoisomer OH Ph D + enantiomer cat OsO 4 NMO H2O acetonearrow_forwardPlease note that it is correct and explains it rightly:Indicate the correct option. The proportion of O, C and H in the graphite oxide is:a) Constant, for the quantities of functional groups of acids, phenols, epoxy, etc. its constants.b) Depending on the preparation method, as much oxidant as the graphite is destroyed and it has less oxygen.c) Depends on the structure of the graphic being processed, whether it can be more tridimensional or with larger crystals, or with smaller crystals and with more edges.arrow_forward
- Check the box under each a amino acid. If there are no a amino acids at all, check the "none of them" box under the table. Note for advanced students: don't assume every amino acid shown must be found in nature. ནང་་་ OH HO HO NH2 + NH3 O OIL H-C-CO CH3-CH O C=O COOH COOH + H2N C-H O H2N C H CH3-CH CH2 HO H3N O none of them 口 CH3 CH2 OH Хarrow_forwardWhat is the systematic name of the product P of this chemical reaction? 010 HO-CH2-CH2-C-OH ☐ + NaOH P+ H2Oarrow_forward1. Provide missing starting materials, reagents, products. If a product cannot be made, write NP (not possible) in the starting material box. a) C10H12 Ph OMe AcOHg+ + enantiomer Br C6H10O2 + enantiomerarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





