Concept explainers
Comparing Example 12.1 (Section 12.1) and Example 12.2 (Section 12.2), it seems that 700 N of air is exerting a downward force of 2.0 × 106 N on the floor. How is this possible?
EXAMPLE 12.1 THE WEIGHT OF A ROOMFUL OF AIR
Find the mass and weight of the air at 20°C in a living room with a 4.0 m × 5.0 m floor and a ceiling 3.0 m high, and the mass and weight of an equal volume of water.
SOLUTION
IDENTIFY and SET UP: We assume that the air density is the same throughout the room. (Air is less dense at high elevations than near sea level, but the density varies negligibly over the room’s 3.0-m height; see Section 12.2.) We use Eq. (12. 1) to relate the mass mair to the room’s volume V (which we’ll calculate) and the air density ρair (given in Table 12.1).
EXECUTE: We have V = (4.0 m) (5.0 m) (3.0 m) = 60m3, so from Eq. (12.1),
The mass and weight of an equal volume of water are
EVALUATE: A roomful of air weighs about the same as an average adult. Water is nearly a thousand times denser than air, so its mass and weight are larger by the same factor. The weight of a roomful of water would collapse the floor of an ordinary house.
EXAMPLE 12.2 THE FORCE OF AIR
In the room described in Example 12.1, what is the total downward force on the floor due to an air pressure of 1.00 atm?
SOLUTION
IDENTIFY and SET UP: This example uses the relationship among the pressure p of a fluid (air), the area A subjected to that pressure, and the resulting normal force F the fluid exerts. The pressure is uniform, so we use Eq. (12.3), F⊥ = pA, to determine F⊥. The floor is horizontal, so F⊥ is vertical (downward).
EXECUTE: We have A = (4.0 m) (5.0 m) = 20 m2, so from Eq. (12.3),
EVALUATE: Unlike the water in Example 12.1, F⊥ will not collapse the floor here, because there is an upward force of equal magnitude on the floor’s underside. If the house has a basement, this upward force is exerted by the air underneath the floor. In this case, if we ignore the thickness of the floor, the net force due to air pressure is zero.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: Structure and Properties (2nd Edition)
Anatomy & Physiology (6th Edition)
Introductory Chemistry (6th Edition)
- A hydrogen atom has just a single electron orbiting the nucleus, which happens to be a single proton without any neutrons. The proton is positively charged, the electron negatively, but both with the same magnitude of charge given by e=1.602x10-19C. The mass of an electron is 9.11x10-31kg, and the proton is 1.67x10-27kg. Find the ratio of the electrostatic to the gravitational force of attraction between the electron and the proton in hydrogen. \arrow_forwardWhat is the third law pair to the normal force as you sit in a chair? What effect does the sun's pull on earth have in terms of third law pairs?arrow_forwardUsing Newton's 2nd law, show that all objects subject to the pull of gravity alone should fall at the same rate. What is that rate?arrow_forward
- No chatgpt pls will upvotearrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardLight travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media: crown glass (n = 1.52)arrow_forward
- 2.62 Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the pas- senger train and the back of the freight train.arrow_forwardCan I get help with how to calculate total displacement? The answer is 78.3x-4.8yarrow_forward2.70 Egg Drop. You are on the Figure P2.70 roof of the physics building, 46.0 m above the ground (Fig. P2.70). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your profes- sor's head, where should the profes- sor be when you release the egg? Assume that the egg is in free fall. 2.71 CALC The acceleration of a particle is given by ax(t) = -2.00 m/s² +(3.00 m/s³)t. (a) Find the initial velocity Vox such that v = 1.20 m/s 1.80 m 46.0 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning