University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.2CYU
Check your Understanding Explain which one of the following satisfies both equilibrium conditions: (a) a tennis ball that does not spin as it travels in the air, (b) a pelican that is gliding in the air at a constant velocity at one altitude; or (c) a crankshaft in the engine of a parked car.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
4.4 A man is dragging a trunk up the
loading ramp of a mover's truck. The
ramp has a slope angle of 20.0°, and
the man pulls upward with a force F
whose direction makes an angle of 30.0°
75.0°
with the ramp (Fig. E4.4). (a) How large a force F is necessary for the
component Fx parallel to the ramp to be 90.0 N? (b) How large will the
component Fy perpendicular to the ramp be then?
Figure E4.4
30.0
20.0°
1.
*
A projectile is shot from a launcher at an angle e, with an initial velocity
magnitude v., from a point even with a tabletop. The projectile lands on the tabletop
a horizontal distance R (the "range") away from where it left the launcher. Set this
up as a formal problem, and solve for vo (i.e., determine an expression for Vo in
terms of only R, 0., and g). Your final equation will be called Equation 1.
2. A projectile is shot from a launcher at an angle 0,, with an initial velocity
magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a
child's noggin (see Figure 1). The apple is a height y above the tabletop, and a
horizontal distance x from the launcher. Set this up as a formal problem, and solve
for x. That is, determine an expression for x in terms of only v₁, o,y and g.
Actually, this is quite a long expression. So, if you want, you can determine an
expression for x in terms of v., 0., and time t, and determine another expression for
timet (in terms of v., 0., y and g) that you will solve and then substitute the value of
t into the expression for x. Your final equation(s) will be called Equation 3 (and
Equation 4).
Chapter 12 Solutions
University Physics Volume 1
Ch. 12 - Check Your Understanding Solve Example 12.1 by...Ch. 12 - Check your Understanding Explain which one of the...Ch. 12 - Check your Understanding Repeat Example 12.3 using...Ch. 12 - Check Your understanding Repeat ExampIe12.4...Ch. 12 - Check Your Understanding For the situation in...Ch. 12 - Check Your Understanding Solve the problem in...Ch. 12 - Check Your Understanding A 50-kg person stands 1.5...Ch. 12 - Check Your Understanding A 400.0-N sign hangs from...Ch. 12 - Check Your Understanding Find the compressive...Ch. 12 - Check Your Understanding A 2.0-m-long wire...
Ch. 12 - Check Your Understanding If the normal force...Ch. 12 - Check Your Understanding Explain why the concepts...Ch. 12 - What can you say about the velocity of a moving...Ch. 12 - Under what conditions can a rotating body be in...Ch. 12 - What three factors affect the torque created by a...Ch. 12 - Mechanics sometimes put a length of pipe over the...Ch. 12 - If there is only one external force (or toe)...Ch. 12 - If an object is in equilibrium there must be an...Ch. 12 - If an odd number of forces act on an object, the...Ch. 12 - A body moving in a circle with a constant seed is...Ch. 12 - What purpose is served by a long and flexible pole...Ch. 12 - Is it possible to rest a ladder against a rough...Ch. 12 - Show how a spring scale and a simple fulcrum can...Ch. 12 - A painter climbs a ladder. Is the ladder more...Ch. 12 - Note: Unless stated otherwise, the weights of the...Ch. 12 - When a glass bottle full of vinegar warms up, both...Ch. 12 - A thin wire strung between two nails in the wall...Ch. 12 - Review the relationship between stress and strain....Ch. 12 - What type of stress are you applying when you...Ch. 12 - Can compress stress be applied to a rubber band?Ch. 12 - Can Young’s modulus have a negative value? What...Ch. 12 - If a hypothetical material has a negative bulk...Ch. 12 - Discuss how you might measure the bulk modulus of...Ch. 12 - Note: Unless stated othen.ise the weights of the...Ch. 12 - Steel rods are commonly placed in concrete before...Ch. 12 - When tightening a bolt, you push perpendicularly...Ch. 12 - When opening do you push on it perpendicularly...Ch. 12 - Find the magnitude of the tension in each...Ch. 12 - What force must be applied at point P to keep the...Ch. 12 - Is it possible to apply a force at P to keep in...Ch. 12 - Two children push on opposite of a door during...Ch. 12 - A small 1000-kg SUV has a wheel base of 3.0 m. If...Ch. 12 - The uniform seesaw is balanced at its center of...Ch. 12 - A uniform plank rests on a level surface as shown...Ch. 12 - The uniform seesaw shown below is balanced on a...Ch. 12 - In order to get his car out of the mud, a man ties...Ch. 12 - A uniform 40.0-kg scaffold of length 60 m is...Ch. 12 - When the structure shown below is supported at...Ch. 12 - To get up on the roof, a person (mass 70.0 kg)...Ch. 12 - A uniform horizontal strut weighs 400.0 N. One end...Ch. 12 - The forearm shown below is positioned at an angle ...Ch. 12 - The uniform boom shown below weighs 3000N . It is...Ch. 12 - The uniform boom shown below weighs 700N , and the...Ch. 12 - A 12.0m boom, of a crane lifting a 3000kg load is...Ch. 12 - A uniform trapdoor shown below is 1.0m by 1.5m and...Ch. 12 - A 90kg man walks on a sawhorse, as shown below....Ch. 12 - The “lead” in pencils is a graphite composition...Ch. 12 - TV broadcast antennas are the tallest artificial...Ch. 12 - By how much does a 65.0kg mountain climber stretch...Ch. 12 - When water freezes, its volume increases by 9.05 ....Ch. 12 - A farmer making grape juice fills a glass bottle...Ch. 12 - A disk between vertebrae in the spine is subjected...Ch. 12 - A vertebrae is subjected to a shearing force of...Ch. 12 - Calculate the force a piano tuner applies to...Ch. 12 - A 20.0m -tall hollow aluminium flagpole is...Ch. 12 - A copper wire of diameter 1.0cm stretches 1.0 when...Ch. 12 - As an oil well is drilled, each new section of...Ch. 12 - Alarge uniform cylindrical steel rod of density...Ch. 12 - A 90-kg mountain climber bangs from a nylon rope...Ch. 12 - A suspender rod of a suspension bridge is 25.0 m...Ch. 12 - A copper wire is 1.0 m long and it diameter is 1.0...Ch. 12 - A 100-N weight is attached to a free end of a...Ch. 12 - The bulk modulus of a material is 1.01011N/m2 ....Ch. 12 - Normal forces of magnitude 1.0106N are applied...Ch. 12 - During a walk on a rope, a tightrope walker...Ch. 12 - When using a pencil eraser, you exert a vertical...Ch. 12 - Normal forces are applied uniformly over the...Ch. 12 - A uniform rope of cross-sectional area 0.50cm2...Ch. 12 - One end of a vertical metallic wire of length 2.0m...Ch. 12 - An aluminium (=2.7g/cm3) wire is suspended from...Ch. 12 - The coefficient of static friction between the...Ch. 12 - A pencil rests against a corner, as shown below....Ch. 12 - A uniform 4.0m plank weighing 200.0N rests against...Ch. 12 - A 40kg boy jumps from a height of 3.0m , lands on...Ch. 12 - Two thin rods, one made of steel and the other of...Ch. 12 - Two rods, one made of copper and the other of...Ch. 12 - A horizontal force F is applied to a uniform...Ch. 12 - When a motor is set on a pivoted mount seen below,...Ch. 12 - Two wheels A and B with weights w and 2w ,...Ch. 12 - Weights are gradually added to a pan until a wheel...Ch. 12 - In order to lift a shovelful of dirt, a gardener...Ch. 12 - A uniform rod of length 2R and mass M is attached...Ch. 12 - The pole shown below is at a 90.0 bend in a power...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Balanced equation for the combustion of propane must be given. Concept Introduction: Hydrocarbons undergo combu...
Living By Chemistry: First Edition Textbook
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 4.56 ... CALC An object of mass m is at rest in equilibrium at the origin. At t = 0 a new force F(t) is applied that has components Fx(t) = k₁ + k₂y Fy(t) = k3t where k₁, k2, and k3 are constants. Calculate the position (1) and veloc- ity (t) vectors as functions of time.arrow_forward4.14 ⚫ A 2.75 kg cat moves in a straight line (the x-axis). Figure E4.14 shows a graph of the x- component of this cat's velocity as a function of time. (a) Find the maximum net force on this cat. When does this force occur? (b) When is the net force on the cat equal to zero? (c) What is the net force at time 8.5 s? Figure E4.14 V₁ (m/s) 12.0 10.0 8.0 6.0 4.0 2.0 0 t(s) 2.0 4.0 6.0 8.0 10.0arrow_forward4.36 ... CP An advertisement claims that a particular automobile can "stop on a dime." What net force would be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance equal to the di- ameter of a dime, 1.8 cm?arrow_forward
- 4.46 The two blocks in Fig. P4.46 are connected by a heavy uniform rope with a mass of 4.00 kg. An up- ward force of 200 N is applied as shown. (a) Draw three free-body diagrams: one for the 6.00 kg block, one for B the 4.00 kg rope, and another one for the 5.00 kg block. For each force, indicate what object exerts that force. (b) What is the acceleration of the system? (c) What is the tension at the top of the heavy rope? (d) What is the tension at the midpoint of the rope? Figure P4.46 F= 200 N 4.00 kg 6.00 kg 5.00 kgarrow_forward4.35 ⚫ Two adults and a child want to push a wheeled cart in the direc- tion marked x in Fig. P4.35 (next page). The two adults push with hori- zontal forces F and F as shown. (a) Find the magnitude and direction of the smallest force that the child should exert. Ignore the effects of friction. (b) If the child exerts the minimum force found in part (a), the cart ac- celerates at 2.0 m/s² in the +x-direction. What is the weight of the cart? Figure P4.35 F₁ = 100 N 60° 30° F2 = 140 Narrow_forward4.21 ⚫ BIO World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 m/s². How much horizontal force must a 55 kg sprinter exert on the starting blocks to produce this acceleration? Which object exerts the force that propels the sprinter: the blocks or the sprinter herself?arrow_forward
- No chatgpt pls will upvotearrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forwardThe kinetic energy of a pendulum is greatest Question 20Select one: a. at the top of its swing. b. when its potential energy is greatest. c. at the bottom of its swing. d. when its total energy is greatest.arrow_forward
- Part a-D plarrow_forwardThe figure (Figure 1) shows representations of six thermodynamic states of the same ideal gas sample. Figure 1 of 1 Part A ■Review | Constants Rank the states on the basis of the pressure of the gas sample at each state. Rank pressure from highest to lowest. To rank items as equivalent, overlap them. ▸ View Available Hint(s) highest 0 ☐ ☐ ☐ ☐ ☐ ☐ Reset Help B F A D E The correct ranking cannot be determined. Submit Previous Answers × Incorrect; Try Again; 4 attempts remaining Provide Feedback lowest Next >arrow_forwardPart A m 2πkT ) 3/2 Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution, = ƒ(v) = 4π (· v²e-mv²/2kT . (Hint: Make the change of variable v² =x and use the tabulated integral foxne integer and a is a positive constant.) Express your answer in terms of the variables T, m, and appropriate constants. -ax dx n! - an+1 where n is a positive (v) = ΕΠΙ ΑΣΦ Submit Previous Answers Request Answer ? × Incorrect; Try Again; 4 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Startarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY