Organic Chemistry: Principles And Mechanisms (second Edition)
Organic Chemistry: Principles And Mechanisms (second Edition)
2nd Edition
ISBN: 9780393630749
Author: KARTY, Joel
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.29P
Interpretation Introduction

(a)

Interpretation:

How the given compound with specified stereochemistry can be produced from an alkene is to be shown, along with the reagents used and special conditions if any.

Concept introduction:

A cyclopropyl group can be introduced in a compound by reacting the corresponding alkene (or alkyne) with a carbene. A carbene is a species with only two groups, typically hydrogen or halogen atoms bonded to a carbon. The carbon atom also carries a lone pair of electrons or sometimes two unpaired electrons. This pair of electrons makes the carbene extremely reactive. Carbenes add to an alkene or alkyne by simultaneously forming bonds with the two carbon atoms from the double (or triple) bond. One bond is formed by the lone pair on the carbene and the other by the π bond pair from the initial double (or triple) bond.

The stereochemistry of the double bond is preserved in the reaction as it is a concerted addition. If the alkene has a cis configuration, the two similar substituents on the double bond end up on the same side of the cyclopropyl ring in the product. If it is a trans alkene, the similar substituents on the double bond end up on opposite sides of the ring in the product.

Carbenes are generated in situ, typically by irradiating a mixture of the alkene and diazomethane with UV light or by treating a mixture of the alkene and haloform (trihalomethane) with a strong base like an alkoxide.

Interpretation Introduction

(b)

Interpretation:

How the given compound with specified stereochemistry can be produced from an alkene is to be shown along with the reagents used and special conditions if any.

Concept introduction:

A cyclopropyl group can be introduced in a compound by reacting the corresponding alkene (or alkyne) with a carbene. A carbene is a species with only two groups, typically hydrogen or halogen atoms bonded to a carbon. The carbon atom also carries a lone pair of electrons or sometimes two unpaired electrons. This pair of electrons makes the carbene extremely reactive. Carbenes add to an alkene or alkyne by simultaneously forming bonds with the two carbon atoms from the double (or triple) bond. One bond is formed by the lone pair on the carbene and the other by the π bond pair from the initial double (or triple) bond.

The stereochemistry of the double bond is preserved in the reaction as it is a concerted addition. If the alkene has a cis configuration, the two similar substituents on the double bond end up on the same side of the cyclopropyl ring in the product. If it is a trans alkene, the similar substituents on the double bond end up on opposite sides of the ring in the product.

Carbenes are generated in situ, typically by irradiating a mixture of the alkene and diazomethane with UV light or by treating a mixture of the alkene and haloform (trihalomethane) with a strong base like an alkoxide.

Interpretation Introduction

(c)

Interpretation:

How the given compound with specified stereochemistry can be produced from an alkene is to be shown along with the reagents used and special conditions if any.

Concept introduction:

A cyclopropyl group can be introduced in a compound by reacting the corresponding alkene (or alkyne) with a carbene. A carbene is a species with only two groups, typically hydrogen or halogen atoms bonded to a carbon. The carbon atom also carries a lone pair of electrons or sometimes two unpaired electrons. This pair of electrons makes the carbene extremely reactive. Carbenes add to an alkene or alkyne by simultaneously forming bonds with the two carbon atoms from the double (or triple) bond. One bond is formed by the lone pair on the carbene and the other by the π bond pair from the initial double (or triple) bond.

The stereochemistry of the double bond is preserved in the reaction as it is a concerted addition. If the alkene has a cis configuration, the two similar substituents on the double bond end up on the same side of the cyclopropyl ring in the product. If it is a trans alkene, the similar substituents on the double bond end up on opposite sides of the ring in the product.

Carbenes are generated in situ, typically by irradiating a mixture of the alkene and diazomethane with UV light or by treating a mixture of the alkene and haloform (trihalomethane) with a strong base like an alkoxide.

Blurred answer
Students have asked these similar questions
Assign these C-NMR and H-NMR Spectrum
Predict the product of this organic reaction: IZ + HO i P+H₂O Specifically, in the drawing area below draw the skeletal ("line") structure of P. If there is no reasonable possibility for P, check the No answer box under the drawing area. No Answer Click and drag to start drawing a structure. ☐ :
Predict the products of this organic reaction: 0 O ----- A + KOH ? CH3-CH2-C-O-CH2-C-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. X ⑤ è

Chapter 12 Solutions

Organic Chemistry: Principles And Mechanisms (second Edition)

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY