PRINCIPLES OF INSTRUMENTAL ANALYSIS
PRINCIPLES OF INSTRUMENTAL ANALYSIS
7th Edition
ISBN: 9789353506193
Author: Skoog
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 12.1QAP
Interpretation Introduction

Interpretation:

If the X-ray with tungsten target is operating at a voltage of 50 kV, the short wavelength limit of the produced continuum needs to be calculated.

Concept introduction:

Short wavelength limit is calculated by using Planck’s constant using the following formula-

λSWL=12.398V

Here,

λSWL = short wavelength limit

V= voltage

Expert Solution & Answer
Check Mark

Answer to Problem 12.1QAP

Short wavelength limit of continuum is 0.248Ao.

Explanation of Solution

Short wavelength in X-ray tube is defined as the condition at which the intensity of spectrum is zero at a certain wavelength, where electrons transfer their energy into photon energy. This is given as-

eV=hvmax

On putting the values,

λSWL=12.398V …… (1)

V= 50 kV= 5×103 V

From equation (1)

λSWL=12.39850×103

Therefore,

λSWL=0.248Ao

Conclusion

Short wavelength of continuum is calculated by using Planck’s constant formula which is the ratio of constant value and the given voltage value. Therefore, calculated value of short wavelength is λSWL=0.248Ao.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Are there any alternative methods better than the MOHR titration to quantitatively determine salt in a sample?
hybridization of nitrogen of complex molecules
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO2 (g) = N2O4(g) AGº = -5.4 kJ Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system: Under these conditions, will the pressure of N2O4 tend to rise or fall? Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to '2' rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. 00 rise ☐ x10 fall yes no ☐ atm G Ar 1
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning