Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.1PP

Figure 12.7 shows a branched system in which the pressure at A is 700   k P a and the pressure at B is 550   k P a . Each branch is 60   m long. Neglect losses at the junctions, but consider all elbows. If the system carries oil with a specific weight of 8.80   k N / m 3 , calculate the total volume flow rate. The oil has a kinematic viscosity of

   4.8 × 10 m 2 / s .

Expert Solution & Answer
Check Mark
To determine

Total volume flow rate by using the given information.

Answer to Problem 12.1PP

The total volume flow rate is determined below.

Explanation of Solution

First we have to find the head loss at point A and B on applying the energy equation.

   pAγ+zA+v2A2ghL=pBγ+zB+v2B2g

Here pA =pressure

   γ =specific weight

   zA =Head at A

   v2A =velocity at A

And then parallel system head losses for both the parts are same

   ( h L ) a = ( h L ) b

   = p A p B γ

Then substitute pA=700kN/m2,PB=550kN/m2,γ=8.80kN/m3 values into above equation we get

   ( h L ) a = ( h L ) b

   = 700500 8.80

   =17.05m

Then the roughness of steel pipe is ε=(4.6×105)m

Inside diameter of the pipe is 0.1023m

Find the relative roughness of the elbow

   εD=4.6× 10 50.1023=4.49×104

Corresponding to friction factor value is fr=0.017

Find the total head loss of the upper section

   (hL)=hfric+2helb=fa(LD)ua22g+2fr( L e D)ua22g

For 900 elbows curved, effective length ratio is (LeD)=30

Substitute required values we will get

   ( h L ) a = f a ( 60 0.1023 ) u a 2 2g +2×0.017×(30) u a 2 2g

   =[ 587 f a +1.02 ] u a 2 2g

From the table of text book DN 80 pipes the inside diameter of the pipe is 0.0779m

Find the relative rough ness

   εD=4.6× 10 50.0779=5.9×104

Find the total head loss of the lower branch we will get

   (hL)=hfric+2helb=fa(LD)ua22g+fr( L e D)vua22g+2fr( L e D)eua22g

Substitute above values we get

   (hL)=fb( 60 0.0779)ub22g+2×0.018×(30)ub22g+0.018×(240)ub22g=[770fb+5.4]ub22g

Assume fa=fb=0.02

Find the flow velocity at upper branch

Substitute above value we get

   17.05=[587×0.02+1.02]ua22gva=5.08m/s

Find the Reynolds number for the flow

   NR=uaDav

   NR=5.08×0.10234.8× 10 6=1.08×105

Find the relative roughness we get

   εD=4.6× 10 50.1023=4.49×104

Then the value of friction factor is Fa=0.02

Find the flow velocity at B

Substitute above values we get

   17.05=[770×fb+5.4]ub22×9.81334.521=[770×0.02+5.4]ub2vb=4.01m/s

Calculate the Reynolds number for the flow

   NR=uaDav

Substitute above values we get

   NR=4.01×0.00234.8× 10 6=6.51×104

Find the relative roughness value

   εD=4.6× 10 50.0779=5.9×104

Then the value of friction factor is Fa=0.022.

Recomputed the velocity of flow using above equation

   17.05=[770×fb+5.1]ub22×9.81334.521=[770×0.002+5.1]ub2vb=3.87m/s

Find the Reynolds number for the flow

   NR=uaDav

Substitute above values we get

   NR=3.87×0.07794.8× 10 6=6.51*104

Find the value of relative roughness

   εD=4.6× 10 50.0779=5.9×104

From Moody's diagram, the value of relative roughness and Reynolds number Fb=0.022.

Find the flow rate at A,

We get

   Qa=Aaua

   Qa=(8.213×103)×5.08=4.17×102m3/s

Find the flow rate at B

   Q=AbubQb=(4.768×103)×3.87=1.85×102m3/s

Total volume flow rate is

   Q=Qa+Qb=(4.17×102)+(1.85×102)=6.02× 10 2m3/s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2 A metal block of mass m = 10 kg is sliding along a frictionless surface with an initial speed Vo, as indicated below. The block then slides above an electromagnetic brake that applies a force FEB to the block, opposing its motion. The magnitude of the electromagnetic force varies quadratically with the distance moved along the brake (x): 10 FEB = kx², with k = 5 N m² V₁ = 8 m/s m = 10 kg FEB Frictionless surface Electromagnetic brake ⇒x Determine how far the block slides along the electromagnetic brake before stopping, in m.
Q1: Determine the length, angle of contact, and width of a 9.75 mm thick leather belt required to transmit 15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at 300 r.p.m. and the distance between the centers of two pulleys is 3 meters. The density of the leather is 1000 kg/m³. The maximum allowable stress in the leather is 2.5 MPa. The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive.
5. A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having 20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day under light shock conditions, find from the standpoint of strength, 1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear. Check the gears thus designed from the consideration of wear. The surface endurance limit may be taken as 700 MPa. [Ans. m = 6 mm; b= 60 mm; Tp=24; T=96; Dp = 144mm; DG = 576 mm]

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License