An example for aerosol, foam, emulsion, sol and gel has to be given. Concept Introduction: Based on the particle size of the components, solutions can be of three types – true solutions, colloidal solutions and suspension. Colloidal solutions have the particle size of the range 1 - 1 0 0 0 n m . a colloidal solution is made of dispersed phase and dispersion medium which corresponds to solute and solvent respectively. Depending upon the physical state of dispersed phase and dispersion medium, there are various types of colloids such as gel, foam, alloy, sol etc.
An example for aerosol, foam, emulsion, sol and gel has to be given. Concept Introduction: Based on the particle size of the components, solutions can be of three types – true solutions, colloidal solutions and suspension. Colloidal solutions have the particle size of the range 1 - 1 0 0 0 n m . a colloidal solution is made of dispersed phase and dispersion medium which corresponds to solute and solvent respectively. Depending upon the physical state of dispersed phase and dispersion medium, there are various types of colloids such as gel, foam, alloy, sol etc.
Solution Summary: The author explains that aerosol, foam, emulsion, sol and gel have been given according to their particle size and dispersion medium.
An example for aerosol, foam, emulsion, sol and gel has to be given.
Concept Introduction:
Based on the particle size of the components, solutions can be of three types – true solutions, colloidal solutions and suspension. Colloidal solutions have the particle size of the range 1-1000nm. a colloidal solution is made of dispersed phase and dispersion medium which corresponds to solute and solvent respectively. Depending upon the physical state of dispersed phase and dispersion medium, there are various types of colloids such as gel, foam, alloy, sol etc.
10.
Stereochemistry. Assign R/S stereochemistry for the chiral center indicated on the
following compound. In order to recieve full credit, you MUST SHOW YOUR WORK!
H₂N
CI
OH
CI
カー
11. () Stereochemistry. Draw all possible stereoisomers of the following compound. Assign
R/S configurations for all stereoisomers and indicate the relationship between each as
enantiomer, diastereomer, or meso.
NH2
H
HNH,
-18
b)
8.
Indicate whether the following carbocation rearrangements are likely to occur
Please explain your rational using 10 words or less
not likely to occur
• The double bond is still in the
Same position
+
Likely
to oc
occur
WHY?
-3
H3C
Brave
Chair Conformers. Draw the chair conformer of the following substituted
cyclohexane. Peform a RING FLIP and indicate the most stable
conformation and briefly explain why using 20 words or less.
CI
2
-cobs ??
MUST INDICATE H -2
-2
Br
EQ
Cl
OR
AT
Br
H&
most stable
WHY?
- 4
CH
12
Conformational Analysis. Draw all 6 conformers (one above each letter) of the
compound below looking down the indicated bond. Write the letter of the
conformer with the HIGHEST and LOWEST in energies on the lines provided.
NOTE: Conformer A MUST be the specific conformer of the structure as drawn below
-4 NOT
HOH
OH
3
Conformer A:
Br
OH
A
Samo
Br H
04
Br
H
H3
CH₂
H
anti
stagere
Br CH
clipsed
H
Brott
H
IV
H
MISSING 2
-2
B
C
D
E
F
X
6
Conformer with HIGHEST ENERGY:
13. (1
structure
LOWEST ENERGY:
Nomenclature. a) Give the systematic (IUPAC) name structure. b) Draw the
corresponding to this name. HINT: Do not forget to indicate stereochemistry
when applicable.
a)
८८
2
"Br
{t༐B,gt)-bemn€-nehpརི་ཚ༐lnoa
Parent name (noname)
4 Bromo
Sub = 2-methylethyl-4 Bromo nonane
b) (3R,4S)-3-chloro-4-ethyl-2,7-dimethyloctane
# -2
-2
Chapter 12 Solutions
Bundle: General Chemistry, Loose-Leaf Version, 11th + LabSkills PreLabs v2 for Organic Chemistry (powered by OWLv2), 4 terms (24 months) Printed ... for Ebbing/Gammon's General Chemistry, 11th