(a)
Interpretation:
The reactor temperature corresponding to the feed temperature of
Concept introduction:
The conversion, X can be defined as the moles of any species A that are reacted per mole of A fed in the reactor.
The full form of CSTR is Continuous-Stirred Tank Reactor. This reactor has its application in the industrial processes. This reactor actually used for liquid-phase reactions.
(b)
Interpretation:
The plotting and analysis of the reactor’s temperature as a function of feed temperature is to be stated.
Concept introduction:
The conversion, X can be defined as the moles of any species A that are reacted per mole of A fed in the reactor.
The full form of CSTR is Continuous-Stirred Tank Reactor. This reaction has its application in the industrial processes. This reactor actually used for liquid-phase reactions.
(c)
Interpretation:
The inlet temperature corresponding to which fluid must be preheated for the reactor to operate at high conversion is to be stated. At the calculated inlet temperature, the corresponding temperature and conversion of the fluid inside the CSTR is to be stated.
Concept introduction:
The conversion, X can be defined as the moles of any species A that are reacted per mole of A fed in the reactor.
The full form of CSTR is Continuous-Stirred Tank Reactor. This reaction has its application in the industrial processes. This reactor actually used for liquid-phase reactions.
(d)
Interpretation:
The temperature obtained if the fluid inlet temperature is heated above
Concept introduction:
The conversion, X can be defined as the moles of any species A that are reacted per mole of A fed in the reactor.
The full form of CSTR is Continuous-Stirred Tank Reactor. This reaction has its application in the industrial processes. This reactor actually used for liquid-phase reactions.
(e)
Interpretation:
The inlet extinction temperature for the reaction is to be stated.
Concept introduction:
The conversion, X can be defined as the moles of any species A that are reacted per mole of A fed in the reactor.
The full form of CSTR is Continuous-Stirred Tank Reactor. This reaction has its application in the industrial processes. This reactor actually used for liquid-phase reactions.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
- Please, provide me the solution with details and plot.arrow_forwardQ2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250arrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward
- 4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2arrow_forward(30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forward
- Q1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forwardgive me solution math not explinarrow_forwardgive me solution math not explinarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The