FLUID MECHANICS FUND. (LL)-W/ACCESS
FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 116EP
To determine

Mach number, pressure and temperature of air after the compression.

Expert Solution & Answer
Check Mark

Answer to Problem 116EP

Downstream weak shock for pressure and temperature after the compression.

  P2=17.6 psia

  T2=610 R

Downstream strong shock for pressure and temperature after the compression.

  P2=34.9 psia

  T2=798 R

Mach numbers is given by,

Weak shock Ma2=1.45

Strong shock Ma2=0.644

Explanation of Solution

Given:

Temperature T1 = 480R

Velocity V1=100 m/s

Pressure P1=8 psia

Mach number Ma1=2.0

Force undergo compression turn of 15.

Calculation:

The properties of air,

  cp = 1.039 kJ/kg.K

  k=1.4

k is the specific heat ratio.

FLUID MECHANICS FUND. (LL)-W/ACCESS, Chapter 12, Problem 116EP , additional homework tip  1FLUID MECHANICS FUND. (LL)-W/ACCESS, Chapter 12, Problem 116EP , additional homework tip  2

Will take the angle of deflection as equal to the wedge half-angle, i.e., θδ= 15°.

So, the two values of oblique shock angle β is calculated from

  tanθ=2( M a 1 2 si n 2 β-1)/tanβMa12( k+cos2β)+2tan15o=2( 2 2 si n 2 β-1)/tanβ22( 1.4+cos2β)+2

So, simplify in β. Therefore, by solving in an iterative procedure or using β-θ curves.

  βweak=45.34βstrong=79.83

Then the upstream "normal" Mach number Ma1,n will be given by

  Weak shock   Ma1,n=Ma1sinβ=2sin45.34o=1.423Strong shock   Ma1,n=Ma1sinβ=2sin79.83o=1.969

The downstream "normal" Mach number Ma2,n will be given by

  Weak shock   Ma2,n= ( k-1 )M a 1,n 2 +2 2kM a 1,n 2 -k+1Ma2,n= ( 1.4-1 )1.42 3 2 +2 2×1.4×1.42 3 2 -1.4+1=0.7304Strong shock   Ma2,n= ( k-1 )M a 1,n 2 +2 2kM a 1,n 2 -k+1Ma2,n= ( 1.4-1 )1.96 9 2 +2 2×1.4×1.96 9 2 -1.4+1=0.5828

Downstream pressure and temperature for each case is given by

  Weak shock   P2=P12kMa 1,n2-k+1k+1=6psia2×1.4×1.4232-1.4+11.4+1=17.6 psiaT2=T1P2P1ρ1ρ2=T1P2P12+( k-1)Ma 1,n2( k+1)Ma 1,n2=T1P2P1ρ1ρ2=480 R17.682+( 1.4-1)1.4232( 1.4+1)1.4232=609.5R=610RStrong shock   P2=P12kMa 1,n2-k+1k+1=8psia2×1.4×1.9692-1.4+11.4+1=34.85 psia=34.9 psiaT2=T1P2P1ρ1ρ2=T1P2P12+( k-1)Ma 1,n2( k+1)Ma 1,n2=T1P2P1ρ1ρ2=(480 R)34.8582+( 1.4-1)1.9692( 1.4+1)1.9692=797.9R=798 R

Downstream Mach number is given by

  Weak shock   Ma2=Ma 2,nsin( β-θ)=0.7304sin( 45.3 4 o -1 5 o )=1.45Strong shock   Ma2=Ma 2,nsin( β-θ)=0.5828sin( 79.8 3 o -1 5 o )=0.644

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
During a plant visit, it was noticed that a 12-m-long section of a 10-cm-diameter steam pipe is completely exposed to the ambient air. The temperature measurements indicate that the average temperature of the outer surface of the steam pipe is 75°C when the ambient temperature is 5°C. There are also light winds in the area at 10 km/h. The emissivity of the outer surface of the pipe is 0.8, and the average temperature of the surfaces surrounding the pipe, including the sky, is estimated to be 0°C. Determine the amount of heat lost from the steam during a 10-h-long work day. Steam is supplied by a gas-fired steam generator that has an efficiency of 80 percent, and the plant pays $1.05/therm of natural gas. If the pipe is insulated and 90 percent of the heat loss is saved, determine the amount of money this facility will save a year as a result of insulating the steam pipes. Assume the plant operates every day of the year for 10 h. State your assumptions.
An old fashioned ice cream kit consists of two concentric cylinders of radii Ra and Rb. The inner cylinder is filled with milk and ice cream ingredients while the space between the two cylinders is filled with an ice-brine mixture. Ice cream begins to form on the inner surface of the inner cylinder. To expedite the process, would you recommend rotating the inner cylinder? Justify your recommendation. icecream/ ice-brine Ra Rb
Find temperatures STRICTLY USING RITZ APPROXIMATION METHOD

Chapter 12 Solutions

FLUID MECHANICS FUND. (LL)-W/ACCESS

Ch. 12 - Prob. 74PCh. 12 - Prob. 75PCh. 12 - For an ideal gas flowing through a normal shock,...Ch. 12 - Prob. 77CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 80CPCh. 12 - Prob. 81CPCh. 12 - Prob. 82CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 84EPCh. 12 - Prob. 85PCh. 12 - Prob. 86PCh. 12 - Prob. 87EPCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90PCh. 12 - Prob. 91PCh. 12 - Prob. 93CPCh. 12 - Prob. 94CPCh. 12 - Prob. 95CPCh. 12 - Prob. 96CPCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101PCh. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Prob. 105PCh. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 110PCh. 12 - Prob. 112PCh. 12 - Prob. 113PCh. 12 - Prob. 114PCh. 12 - Prob. 115PCh. 12 - Prob. 116EPCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - Prob. 123PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 125PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 127PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - Prob. 131PCh. 12 - Prob. 132PCh. 12 - Prob. 133PCh. 12 - Prob. 134PCh. 12 - Prob. 135PCh. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 145PCh. 12 - Prob. 148PCh. 12 - Prob. 149PCh. 12 - Prob. 150PCh. 12 - Prob. 151PCh. 12 - Prob. 153PCh. 12 - Prob. 154PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License