Interpretation: The hydrocarbons that are liquids at room temperature given in the table are to be determined. The trends in the melting and boiling points of the given hydrocarbons are to be described and the regular trend is to be identified. The types of intermolecular forces present in the given hydrocarbons are to be identified and the boiling point trend is to be explained on the basis intermolecular forces. The graph between boiling point and molar mass of hydrocarbons is to be drawn. From the graph drawn, the boiling point of heptane is to be predicted.
Concept Introduction: The lower mass hydrocarbons have low boiling point and usually, they evaporate at room temperature.
The hydrocarbon with higher molar mass exists as a liquid at room temperature.
The boiling point of hydrocarbon increases with increase of molar mass.
The dispersion force exists between the hydrocarbons.
Greater the dispersion forces, higher will be the boiling point.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Introductory Chemistry Plus Mastering Chemistry with Pearson eText -- Access Card Package (6th Edition) (New Chemistry Titles from Niva Tro)
- The SN 1 mechanism starts with the rate-determining step which is the dissociation of the alkyl halide into a carbocation and a halide ion. The next step is the rapid reaction of the carbocation intermediate with the nucleophile; this step completes the nucleophilic substitution stage. The step that follows the nucleophilic substitution is a fast acid-base reaction. The nucleophile now acts as a base to remove the proton from the oxonium ion from the previous step, to give the observed product. Draw a curved arrow mechanism for the reaction, adding steps as necessary. Be sure to include all nonzero formal charges. Cl: Add/Remove step G Click and drag to start drawing a structure.arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardA monochromatic light with a wavelength of 2.5x10-7m strikes a grating containing 10,000 slits/cm. Determine the angular positions of the second-order bright line.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Us the reaction conditions provided and follow the curved arrow to draw the resulting structure(s). Include all lone pairs and charges as appropriate. H :I H 0arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning