Two isomers (A and B) of a given compound dimerize as follows: 2A → k 1 A 2 2B → k 2 B 2 Both processes are known to be second order in reactant, and k 1 is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A] 0 = 1.00 × 10 −2 M and [B] 0 = 2.50 × 10 −2 M . It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as Rate = − Δ [ A ] Δ t = k 1 [ A ] 2 R a t e = − Δ [ B ] Δ t = k 2 [ B ] 2 a. Calculate the concentration of A 2 after 3.00 min. b. Calculate the value of k 2 . c. Calculate the half-life for the experiment involving A.
Two isomers (A and B) of a given compound dimerize as follows: 2A → k 1 A 2 2B → k 2 B 2 Both processes are known to be second order in reactant, and k 1 is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A] 0 = 1.00 × 10 −2 M and [B] 0 = 2.50 × 10 −2 M . It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as Rate = − Δ [ A ] Δ t = k 1 [ A ] 2 R a t e = − Δ [ B ] Δ t = k 2 [ B ] 2 a. Calculate the concentration of A 2 after 3.00 min. b. Calculate the value of k 2 . c. Calculate the half-life for the experiment involving A.
Solution Summary: The author explains that the concentration of the product is to be calculated corresponding to the given reactions and data. The rate constant for second order reaction is given by the equation.
Two isomers (A and B) of a given compound dimerize as follows:
2A
→
k
1
A
2
2B
→
k
2
B
2
Both processes are known to be second order in reactant, and k1
is known to be 0.250 L/mol · s at 25°C. In a particular experiment A and B were placed in separate containers at 25°C, where [A]0 = 1.00 × 10−2M and [B]0 = 2.50 × 10−2M. It was found that after each reaction had progressed for 3.00 min, [A] = 3.00[B]. In this case the rate laws are defined as
Rate
=
−
Δ
[
A
]
Δ
t
=
k
1
[
A
]
2
R
a
t
e
=
−
Δ
[
B
]
Δ
t
=
k
2
[
B
]
2
a. Calculate the concentration of A2 after 3.00 min.
b. Calculate the value of k2.
c. Calculate the half-life for the experiment involving A.
4.
a) Give a suitable rationale for the following cyclization, stating the type of process involved
(e.g. 9-endo-dig), clearly showing the mechanistic details at each step.
H
CO₂Me
1) NaOMe
2) H3O®
CO₂Me
2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for
unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be
catalyzed the propylene molecules must first adsorb onto the surface. In order to completely
cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total
of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that
have been absorbed onto the platinum surface.
Chem 141, Dr. Haefner
2. (a) Many main group oxides form acidic solutions when added to water. For example solid
tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced
chemical equation for this reaction.
(b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures
to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-)
and carbon monoxide. Write a balanced chemical equation for this reaction.
Chapter 12 Solutions
Bundle: Chemistry, 10th + Laboratory Handbook for General Chemistry, 3rd + Student Resource Center Printed Access Card + Student Solutions Manual for ... Access Card for Zumdahl/Zumdahl/DeCoste
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.