Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 10P
To determine

Hydraulic grade line, differentiate from energy grade line, and the condition when both lines coincide with the free surface of water.

Blurred answer
Students have asked these similar questions
A counter flow double pipe heat exchanger is being used to cool hot oil from 320°F to 285°F using cold water. The water, which flows through the inner tube, enters the heat exchanger at 70°F and leaves at 175°F. The inner tube is ¾-std type L copper. The overall heat transfer coefficient based on the outside diameter of the inner tube is 140 Btu/hr-ft2-°F. Design conditions call for a total heat transfer duty (heat transfer rate between the two fluids) of 20,000 Btu/hr. Determine the required length of this heat exchanger (ft).
! Required information A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin (cp=0.60 Btu/lbm.°F) from 80°F to 140°F by hot water (Cp = 1.0 Btu/lbm-°F) that enters the thin-walled 0.5-in-diameter tubes at 175°F and leaves at 120°F. The total length of the tubes in the heat exchanger is 400 ft. The convection heat transfer coefficient is 4 Btu/h-ft²°F on the glycerin (shell) side and 70 Btu/h-ft²°F on the water (tube) side. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the rate of heat transfer in the heat exchanger before any fouling occurs. Correction factor F 1.0 10 0.9 0.8 R=4.0 3.0 2.0.15 1.0 0.8.0.6 0.4 0.2 0.7 0.6 R= T1-T2 12-11 0.5 12-11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes P= T₁-11 The rate of heat transfer in the heat exchanger is Btu/h.
! Required information Air at 25°C (cp=1006 J/kg.K) is to be heated to 58°C by hot oil at 80°C (cp = 2150 J/kg.K) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/K and the mass flow rate of air is twice that of oil. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air Oil 80°C Determine the effectiveness of the heat exchanger.

Chapter 12 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 12 - A glass manometer with oil as the working fluid is...Ch. 12 - The velocity of a fluid flowing in a pipe is to be...Ch. 12 - The water level of a tank on a building roof is 20...Ch. 12 - Prob. 14PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - Prob. 18PCh. 12 - A piezometer and a Pitot tube are tapped into a...Ch. 12 - The diameter of a cylindrical water tank is Do and...Ch. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - An airplane is flying at an altitude of 12,000 m....Ch. 12 - While traveling on a dirt road, the bottom of a...Ch. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Air at 105 kPa and 37°C flows upward through a...Ch. 12 - A handheld bicycle pump can be used as an atomizer...Ch. 12 - Prob. 31PCh. 12 - The water pressure in the mains of a city at a...Ch. 12 - Prob. 33PCh. 12 - Air is flowing through a venturi meter whose...Ch. 12 - The water level in a tank is 15 m above the...Ch. 12 - What is useful pump head? How is it related to the...Ch. 12 - Prob. 38PCh. 12 - What is irreversible head loss? How is it related...Ch. 12 - Consider the steady adiabatic flow of an...Ch. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - In a hydroelectric power plant, water flows from...Ch. 12 - Reconsider Prob. 12–45E. Determine the flow rate...Ch. 12 - Prob. 47PCh. 12 - Water is being pumped from a large lake to a...Ch. 12 - A 15-hp (shaft) pump is used to raise water to a...Ch. 12 - Prob. 51PCh. 12 - The water level in a tank is 20 m above the...Ch. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Water flows at a rate of 20 L/s through a...Ch. 12 - Prob. 56PCh. 12 - Prob. 57PCh. 12 - Prob. 58PCh. 12 - Prob. 59PCh. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A 73-percent efficient 12-hp pump is pumping water...Ch. 12 - Prob. 65PCh. 12 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 12 - Air at 100 kPa and 25°C flows in a horizontal duct...Ch. 12 - Prob. 68RQCh. 12 - Prob. 69RQCh. 12 - Prob. 70RQCh. 12 - A 3-m-high large tank is initially filled with...Ch. 12 - Prob. 73RQCh. 12 - Prob. 74RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License