MCAT-Style Passage Problems Thermal Properties of the Oceans Seasonal temperature changes in the ocean only affect the top layer of water, to a depth of 500 0m or so. This “mixed” layer is thermally isolated from the cold, deep water below. The average temperature of this top layer of the world’s oceans, which has area 3.6 × 10 8 km 2 , is approximately 17°C . In addition to seasonal temperature changes, the oceans have experienced an overall warming trend over the last century that is expected to continue as the earth’s climate changes. A warmer ocean means a larger volume of water; the oceans will rise. Suppose the average temperature of the top layer of the world's oceans were to increase from a temperature T i ; to a temperature T f . The area of the oceans will not change, as this is fixed by the size of the ocean basin, so any thermal expansion of the water will cause the water level to rise, as shown in Figure P12.109 . The original volume is the product of the original depth and the surface area, V i = Ad i . The change in volume is given by Δ V = A Δ d . Figure P12.109 If the top 500 m of ocean water increased in temperature from 17°C to 18°C, what would be the resulting rise in ocean height? A. 0.11 m B. 0.22 m C. 0.44 m D. 0.88 m
MCAT-Style Passage Problems Thermal Properties of the Oceans Seasonal temperature changes in the ocean only affect the top layer of water, to a depth of 500 0m or so. This “mixed” layer is thermally isolated from the cold, deep water below. The average temperature of this top layer of the world’s oceans, which has area 3.6 × 10 8 km 2 , is approximately 17°C . In addition to seasonal temperature changes, the oceans have experienced an overall warming trend over the last century that is expected to continue as the earth’s climate changes. A warmer ocean means a larger volume of water; the oceans will rise. Suppose the average temperature of the top layer of the world's oceans were to increase from a temperature T i ; to a temperature T f . The area of the oceans will not change, as this is fixed by the size of the ocean basin, so any thermal expansion of the water will cause the water level to rise, as shown in Figure P12.109 . The original volume is the product of the original depth and the surface area, V i = Ad i . The change in volume is given by Δ V = A Δ d . Figure P12.109 If the top 500 m of ocean water increased in temperature from 17°C to 18°C, what would be the resulting rise in ocean height? A. 0.11 m B. 0.22 m C. 0.44 m D. 0.88 m
Seasonal temperature changes in the ocean only affect the top layer of water, to a depth of 500 0m or so. This “mixed” layer is thermally isolated from the cold, deep water below. The average temperature of this top layer of the world’s oceans, which has area 3.6 × 108 km2, is approximately 17°C.
In addition to seasonal temperature changes, the oceans have experienced an overall warming trend over the last century that is expected to continue as the earth’s climate changes. A warmer ocean means a larger volume of water; the oceans will rise. Suppose the average temperature of the top layer of the world's oceans were to increase from a temperature Ti; to a temperature Tf. The area of the oceans will not change, as this is fixed by the size of the ocean basin, so any thermal expansion of the water will cause the water level to rise, as shown in Figure P12.109. The original volume is the product of the original depth and the surface area, Vi = Adi. The change in volume is given by ΔV = AΔd.
Figure P12.109
If the top 500 m of ocean water increased in temperature from 17°C to 18°C, what would be the resulting rise in ocean height?
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.