(a)
Interpretation:
The Bohr orbits should be defined.
Concept Introduction:
The electrons present in atoms are revolving around the nucleus with different energies is known as
The electronic configuration is also denoted by the pictorial representations, known as orbital diagrams. Orbital diagram represents the pairing arrangement of electrons and individual orbitals. The filling of electrons in the orbital is done in the way; first the electrons are filled single in the orbital, after filling the single electron per orbital, if any electron is left in that energy level, then pairing of electrons occurs. Electrons are present with opposite spin in the orbital.
(b)
Interpretation:
The orbitals should be defined.
Concept Introduction:
The electrons present in atoms are revolving around the nucleus with different energies is known as Bohr Model. This model is similar to the Solar system structure as planets are revolving around the sun.
The electronic configuration is also denoted by the pictorial representations, known as orbital diagrams. Orbital diagram represents the pairing arrangement of electrons and individual orbitals. The filling of electrons in the orbital is done in the way; first the electrons are filled single in the orbital, after filling the single electron per orbital, if any electron is left in that energy level, then pairing of electrons occurs. Electrons are present with opposite spin in the orbital.
(c)
Interpretation:
The orbital size should be defined.
Concept Introduction:
The electrons present in atoms are revolving around the nucleus with different energies is known as Bohr Model. This model is similar to the Solar system structure as planets are revolving around the sun.
The electronic configuration is also denoted by the pictorial representations, known as orbital diagrams. Orbital diagram represents the pairing arrangement of electrons and individual orbitals. The filling of electrons in the orbital is done in the way; first the electrons are filled single in the orbital, after filling the single electron per orbital, if any electron is left in that energy level, then pairing of electrons occurs. Electrons are present with opposite spin in the orbital.
(d)
Interpretation:
The sublevel should be defined.
Concept Introduction:
The electrons present in atoms are revolving around the nucleus with different energies is known as Bohr Model. This model is similar to the Solar system structure as planets are revolving around the sun.
The electronic configuration is also denoted by the pictorial representations, known as orbital diagrams. Orbital diagram represents the pairing arrangement of electrons and individual orbitals. The filling of electrons in the orbital is done in the way; first the electrons are filled single in the orbital, after filling the single electron per orbital, if any electron is left in that energy level, then pairing of electrons occurs. Electrons are present with opposite spin in the orbital.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Bundle: Introductory Chemistry: A Foundation, 8th + OWLv2 6-Months Printed Access Card
- Comment on the following paragraph. In halides, MXn stoichiometry does not require a value of n so large as to prevent the approach of M+ ions, for steric or electrostatic reasons.arrow_forwardExplain Wade's rules, Indicate what the letters S and n represent in the formula.arrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- Hi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning