Probabilities and Coincidence of Shared Birthdays Use a calculator to solve this exercise. Round probabilities to three decimal places. a. If two people are selected at random, the probability that they do not have the same birthday (day and month) is 365 365 . 364 365 . Explain why this is so. (Ignore leap years and assume 365 days in a year.) b. If three people are selected at random, find the probability that they all have different birthdays. c. If three people are selected at random, find the probability that at least two of them have the same birthday. d. If 20 people are selected at random, find the probability that at least 2 of them have the same birthday. e. Show that if 23 people are selected at random, the probability that at least 2 of them have the same birthday is greater than $$.
Probabilities and Coincidence of Shared Birthdays Use a calculator to solve this exercise. Round probabilities to three decimal places. a. If two people are selected at random, the probability that they do not have the same birthday (day and month) is 365 365 . 364 365 . Explain why this is so. (Ignore leap years and assume 365 days in a year.) b. If three people are selected at random, find the probability that they all have different birthdays. c. If three people are selected at random, find the probability that at least two of them have the same birthday. d. If 20 people are selected at random, find the probability that at least 2 of them have the same birthday. e. Show that if 23 people are selected at random, the probability that at least 2 of them have the same birthday is greater than $$.
Solution Summary: The author calculates the probability of three people selected at random having different birthdays.
1.
2.
Show that the following are not logically equivalent by finding a counterexample:
(p^q) →r and
(db) V (d←d)
Show that the following is not a contradiction by finding a counterexample:
(pV-q) AqA (pv¬q Vr)
3.
Here is a purported proof that (pq) ^ (q → p) = F:
(db) v (bd) = (db) v (bd)
=(qVp) A (g→p)
= (¬¬q V ¬p) ^ (q→ p)
(db) V (db) =
=¬(a→p)^(a→p)
= (gp) ^¬(a → p)
=F
(a) Show that (pq) ^ (q→p) and F are not logically equivalent by finding a counterex-
ample.
(b) Identify the error(s) in this proof and justify why they are errors. Justify the other steps
with their corresponding laws of propositional logic.
Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table.
Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points)
Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points)
Hint for the first part of question 2: To assist you with filling out the table in the first part of the question,…
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Probability & Statistics (28 of 62) Basic Definitions and Symbols Summarized; Author: Michel van Biezen;https://www.youtube.com/watch?v=21V9WBJLAL8;License: Standard YouTube License, CC-BY
Introduction to Probability, Basic Overview - Sample Space, & Tree Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=SkidyDQuupA;License: Standard YouTube License, CC-BY