Trajectories on circles and spheres Determine whether the following trajectories lie on a circle in ℝ 2 or sphere in ℝ 3 centered at the origin. If so, find the radius of the circle or sphere and show that the position vector and the velocity vector are everywhere orthogonal. 30. r ( t ) = 〈 3 cos t + 2 sin t , − 3 cos t + 2 sin t , 2 sin t 〉 , for 0 ≤ t ≤ 2 π
Trajectories on circles and spheres Determine whether the following trajectories lie on a circle in ℝ 2 or sphere in ℝ 3 centered at the origin. If so, find the radius of the circle or sphere and show that the position vector and the velocity vector are everywhere orthogonal. 30. r ( t ) = 〈 3 cos t + 2 sin t , − 3 cos t + 2 sin t , 2 sin t 〉 , for 0 ≤ t ≤ 2 π
Solution Summary: The author determines whether the given trajectory lies on a circle or sphere in R3 centered at origin. The position vector and velocity vector are everywhere orthogonal.
Trajectories on circles and spheresDetermine whether the following trajectories lie on a circle in
ℝ
2
or sphere in
ℝ
3
centered at the origin. If so, find the radius of the circle or sphere and show that the position vector and the velocity vector are everywhere orthogonal.
30.
r
(
t
)
=
〈
3
cos
t
+
2
sin
t
,
−
3
cos
t
+
2
sin
t
,
2
sin
t
〉
, for 0 ≤ t ≤ 2π
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Can u give rough map of any room u can choose cm on top
3. We'd like to know the first time when the population reaches 7000 people. First, graph the
function from part (a) on your calculator or Desmos. In the same window, graph the line y =
7000. Notice that you will need to adjust your window so that you can see values as big as
7000! Investigate the intersection of the two graphs. (This video shows you how to find the
intersection on your calculator, or in Desmos just hover the cursor over the point.) At what
value t> 0 does the line intersect with your exponential function? Round your answer to two
decimal places. (You don't need to show work for this part.) (2 points)
Suppose the planet of Tattooine currently has a population of 6500 people and an annual growth rate of
0.35%. Use this information for all the problems below.
1. Find an exponential function f(t) that gives the population of Tattooine t years from now. (3
points)
Chapter 11 Solutions
Calculus: Early Transcendentals, Books a la Carte Plus MyLab Math/MyLab Statistics Student Access Kit (2nd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.