
Concept explainers
(a)
The magnitude of the velocity of the parasailer as a function of time.

Answer to Problem 11.164P
Explanation of Solution
Given information:
Length of rope is defined as,
Constant velocity of the boat is
The angle is increasing at
The velocity in radial and transverse components,
The acceleration in radial and transverse components,
Calculation:
According to given information,
Convert,
We know that,
Therefore,
According to the explanation, the relative velocity of parasailer with respect to boat is,
The relative co-ordinates of the relative velocity is equal to,
Therefore the velocity of parasailer is equal to,
We can rewrite this as,
Where,
To find the magnitude,
Now, plot the graph,
Conclusion:
The magnitude of velocity of the parasailer is equal to,
The relevant graph is shown above.
(b)
The magnitude of acceleration of parasailer at

Answer to Problem 11.164P
Explanation of Solution
Given information:
Length of rope is defined as,
Constant velocity of the boat is
The angle is increasing at
The velocity in radial and transverse components,
The acceleration in radial and transverse components,
Calculation:
According to given information,
Convert,
We know that,
Therefore,
According to the explanation, the relative acceleration of parasailer with respect to boat is,
The acceleration of parasailer is equal to,
At,
Therefore the magnitude is equal to,
Conclusion:
The magnitude of acceleration of the parasailer is equal to,
Want to see more full solutions like this?
Chapter 11 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- Solve, use engineering economic tablesarrow_forwardSolve, use engineering economic tablesarrow_forwardA pinion has a pressure angle of 20 degrees a module of 3mm and 20 teeth. It is meshed with a gear having 32 teeth. The center distance between the shafts is 81mm. Determine the gear ratio and diametral pitch .arrow_forward
- USE MATHLAB WITH CODES Estimate the damping ratio, stiffness, natural frequency, and mass of the SDOF system. Please use a MATHLAB with CODES and no negative damping ratio. Data Set 1:Time(s) Data Set 1:top1(g) Data Set 1:bottom(g)0 0.002593181 0.007262860.01 0.011367107528507709 -0.0015110660.02 0.007467585 -0.0058980290.029999999999999999 0.004542943 0.0028758970.040000000000000001 0.018678712689042091 -0.0019985060.050000000000000003 0.004542943 0.0009261360.059999999999999998 0.014779189431130886 -0.0068729090.070000000000000007 0.004055502 -0.0088226710.080000000000000002 0.008442465 -0.0015110660.089999999999999997 0.011854547366917134 -0.0039482670.10000000000000001 0.007467585 0.0058005390.11 0.004055502 0.0043382180.12 0.010392226334810257 0.0019010160.13 0.010392226334810257 -0.001998506% 0.14000000000000001 0.016728950301647186 0.0048256580.14999999999999999 0.007955025…arrow_forwardProvide an example of at least five features produced by a certain machining process (for example, a keyway to accommodate a key iarrow_forwardHow to draw a gam from the data of the subject's readings three times and difficulties in drawing a gam Material Name: Machinery Theory I'm a vehicle engineering student. Please describe details about gam in addition the law gam: 1-tangent cam with reciprocating roller follower. 2-circular arc cam with flat-faced follower.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





