
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
3rd Edition
ISBN: 9780134689555
Author: Edgar Goodaire, Michael Parmenter
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.4, Problem 1E
(a)
To determine
To graph: All non- isomorphic tournaments with three vertices and give the score sequence of each. Also check the transitive in them.
(b)
To determine
Repeat part (a) for tournaments with four vertices.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls
Remix
4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves
to each of the given initial value problems.
(a)
x = x+2y
1111
y = -3x+y
with x(0) = 1, y(0) = -1
(b) Consider the initial value problem corresponding to the given phase portrait.
x = y
y' = 3x + 2y
Draw two "straight line solutions"
passing through (0,0)
(c) Make guesses for the equations of the straight line solutions: y = ax.
It was homework
Chapter 11 Solutions
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 11.1 - Prob. 1TFQCh. 11.1 - Prob. 2TFQCh. 11.1 - Prob. 3TFQCh. 11.1 - In a graph G with two odd vertices, 1 and 2 , the...Ch. 11.1 - If a graph G has six odd vertices, to solve the...Ch. 11.1 - Prob. 6TFQCh. 11.1 - Prob. 7TFQCh. 11.1 - In the weighted graph the Chinese Postman Problem...Ch. 11.1 - Prob. 9TFQCh. 11.1 - In the unweighted graph n, n odd, the Chinese...
Ch. 11.1 - Solve the Chinese Postman Problem for each of the...Ch. 11.1 - Prob. 2ECh. 11.1 - 3. [BB] Solve the Chinese Postman Problem for the...Ch. 11.1 - In a graph G with two odd vertices, 1 and 2 , the...Ch. 11.1 - Solve the Chinese Postman Problem for each of the...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Solve the Chinese Postman Problem for the weighted...Ch. 11.1 - Prob. 9ECh. 11.1 - Prob. 10ECh. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.2 - Prob. 1TFQCh. 11.2 - Prob. 2TFQCh. 11.2 - Prob. 3TFQCh. 11.2 - Prob. 4TFQCh. 11.2 - Prob. 5TFQCh. 11.2 - Prob. 6TFQCh. 11.2 - Prob. 7TFQCh. 11.2 - Prob. 8TFQCh. 11.2 - Prob. 9TFQCh. 11.2 - Prob. 10TFQCh. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prove Theorem 11.2.4: A digraph is Eulerian if and...Ch. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - 13. Label the vertices of each pair of digraphs in...Ch. 11.2 - 14. Consider the digraphs , shown.
(a) Find the...Ch. 11.2 - The answers to exercises marked [BB] can be found...Ch. 11.2 - In each of the following cases, find a permutation...Ch. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - [BB] if a graph G is connected and some...Ch. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - [BB] Apply the original form of Dijkstras...Ch. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - [BB] The Bellman-Ford algorithm can be terminated...Ch. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.3 - Prob. 1TFQCh. 11.3 - Prob. 2TFQCh. 11.3 - Prob. 3TFQCh. 11.3 - Prob. 4TFQCh. 11.3 - Prob. 5TFQCh. 11.3 - Prob. 6TFQCh. 11.3 - Prob. 7TFQCh. 11.3 - Prob. 8TFQCh. 11.3 - Prob. 9TFQCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.4 - Prob. 1TFQCh. 11.4 - Prob. 2TFQCh. 11.4 - Prob. 3TFQCh. 11.4 - Prob. 4TFQCh. 11.4 - Prob. 5TFQCh. 11.4 - Prob. 6TFQCh. 11.4 - Prob. 7TFQCh. 11.4 - Prob. 8TFQCh. 11.4 - Prob. 9TFQCh. 11.4 - Prob. 10TFQCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.5 - Prob. 1TFQCh. 11.5 - Prob. 2TFQCh. 11.5 - Prob. 3TFQCh. 11.5 - Prob. 4TFQCh. 11.5 - Prob. 5TFQCh. 11.5 - Prob. 6TFQCh. 11.5 - Prob. 7TFQCh. 11.5 - Prob. 8TFQCh. 11.5 - Prob. 9TFQCh. 11.5 - 10. In a type scheduling problem, a vertex that...Ch. 11.5 - Prob. 1ECh. 11.5 - [BB] The construction of a certain part in an...Ch. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - 6.(a) Find two different orientations on the edges...Ch. 11.5 - Prob. 7ECh. 11.5 - 8. Repeat Exercise 7 if, in addition to all the...Ch. 11.5 - Repeat Exercise 7 if A takes 6 months to complete...Ch. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - 17. The computer systems manager in mathematics...Ch. 11 - Solve the Chinese Postman Problem for the two...Ch. 11 - Prob. 2RECh. 11 - 3. Solve the Chinese Postman Problem for the...Ch. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - 11. Let and assume that the complete graph has...Ch. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Use a version of Dijkstras algorithm to find a...Ch. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - 20. The following chart lists a number of tasks...Ch. 11 - Prob. 21RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forward(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward
- (6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward(10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward
- (9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward(8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward
- (4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward(2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY