Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
3rd Edition
ISBN: 9780134689555
Author: Edgar Goodaire, Michael Parmenter
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.2, Problem 21E
a)
To determine
The length of shortest paths from v1 to each of the other vertices by using a version of Dijkstra’s algorithm. Also find the shortest path from
b)
To determine
By applying the Bellman-Ford algorithm to the given graph, answer by means of a table like Table 11.12.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the shortest path algorithm
to find a shortest st-path in
the following graph. The number on each edge indicates its length.
Use the Euclidean algorithm to find ged(34, 21).
Find the shortest path from vertex 'S' to 'T’ by Dijkstra's algorithm for the weighted graph:
3
3
d
1
4
Chapter 11 Solutions
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 11.1 - Prob. 1TFQCh. 11.1 - Prob. 2TFQCh. 11.1 - Prob. 3TFQCh. 11.1 - In a graph G with two odd vertices, 1 and 2 , the...Ch. 11.1 - If a graph G has six odd vertices, to solve the...Ch. 11.1 - Prob. 6TFQCh. 11.1 - Prob. 7TFQCh. 11.1 - In the weighted graph the Chinese Postman Problem...Ch. 11.1 - Prob. 9TFQCh. 11.1 - In the unweighted graph n, n odd, the Chinese...
Ch. 11.1 - Solve the Chinese Postman Problem for each of the...Ch. 11.1 - Prob. 2ECh. 11.1 - 3. [BB] Solve the Chinese Postman Problem for the...Ch. 11.1 - In a graph G with two odd vertices, 1 and 2 , the...Ch. 11.1 - Solve the Chinese Postman Problem for each of the...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Solve the Chinese Postman Problem for the weighted...Ch. 11.1 - Prob. 9ECh. 11.1 - Prob. 10ECh. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.2 - Prob. 1TFQCh. 11.2 - Prob. 2TFQCh. 11.2 - Prob. 3TFQCh. 11.2 - Prob. 4TFQCh. 11.2 - Prob. 5TFQCh. 11.2 - Prob. 6TFQCh. 11.2 - Prob. 7TFQCh. 11.2 - Prob. 8TFQCh. 11.2 - Prob. 9TFQCh. 11.2 - Prob. 10TFQCh. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prove Theorem 11.2.4: A digraph is Eulerian if and...Ch. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - 13. Label the vertices of each pair of digraphs in...Ch. 11.2 - 14. Consider the digraphs , shown.
(a) Find the...Ch. 11.2 - The answers to exercises marked [BB] can be found...Ch. 11.2 - In each of the following cases, find a permutation...Ch. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - [BB] if a graph G is connected and some...Ch. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - [BB] Apply the original form of Dijkstras...Ch. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - [BB] The Bellman-Ford algorithm can be terminated...Ch. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.3 - Prob. 1TFQCh. 11.3 - Prob. 2TFQCh. 11.3 - Prob. 3TFQCh. 11.3 - Prob. 4TFQCh. 11.3 - Prob. 5TFQCh. 11.3 - Prob. 6TFQCh. 11.3 - Prob. 7TFQCh. 11.3 - Prob. 8TFQCh. 11.3 - Prob. 9TFQCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.4 - Prob. 1TFQCh. 11.4 - Prob. 2TFQCh. 11.4 - Prob. 3TFQCh. 11.4 - Prob. 4TFQCh. 11.4 - Prob. 5TFQCh. 11.4 - Prob. 6TFQCh. 11.4 - Prob. 7TFQCh. 11.4 - Prob. 8TFQCh. 11.4 - Prob. 9TFQCh. 11.4 - Prob. 10TFQCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.5 - Prob. 1TFQCh. 11.5 - Prob. 2TFQCh. 11.5 - Prob. 3TFQCh. 11.5 - Prob. 4TFQCh. 11.5 - Prob. 5TFQCh. 11.5 - Prob. 6TFQCh. 11.5 - Prob. 7TFQCh. 11.5 - Prob. 8TFQCh. 11.5 - Prob. 9TFQCh. 11.5 - 10. In a type scheduling problem, a vertex that...Ch. 11.5 - Prob. 1ECh. 11.5 - [BB] The construction of a certain part in an...Ch. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - 6.(a) Find two different orientations on the edges...Ch. 11.5 - Prob. 7ECh. 11.5 - 8. Repeat Exercise 7 if, in addition to all the...Ch. 11.5 - Repeat Exercise 7 if A takes 6 months to complete...Ch. 11.5 - Prob. 10ECh. 11.5 - Prob. 11ECh. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - Prob. 15ECh. 11.5 - Prob. 16ECh. 11.5 - 17. The computer systems manager in mathematics...Ch. 11 - Solve the Chinese Postman Problem for the two...Ch. 11 - Prob. 2RECh. 11 - 3. Solve the Chinese Postman Problem for the...Ch. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - 11. Let and assume that the complete graph has...Ch. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Use a version of Dijkstras algorithm to find a...Ch. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - 20. The following chart lists a number of tasks...Ch. 11 - Prob. 21RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the shortest path in the graph from g to a using Dijkstra's Algorithm in graph H. The table below has 3 blanks using Dijkstra's Algorithm. What belongs in the three blanks? e b 6 2 3 d. g a 2 4 6 4 Vertex Status Shortest Dist. from g Previous Vertex 11 +4 = 15, 12 + 1= 13 c, b a visited 9+3 = 12 e, d visited 6 + 5 = 11 f visited 7+2 = 9 f. e e visited 7 visited visited The shortest path is (g, e, d, b, a) = 13 6, 6 + 4 = 10, 7+ 6 = 13 7,6+ 4 = 10, 9 + 3 = 12 6, 6 + 5 = 11, 7 + 6 = 13 O d 6, 6 + 4 = 10, 7+5 = 12 OOO0arrow_forwardApply Dijkstra's algorithm for the following graph. Show the values for p and IN and the d values and s values for each pass. Write out the nodes in the shortest path from 2 to 5 and the distances of the path. Hint: (1) p is the current node that has the shortest d that you will include in your current IN set. (2) Node 2 is the starting node (3) Node 5 is the ending node (4) Please show all steps like we did during the class: draw the table for each step, calculate the new distance for each step, update the table, repeat until the ending node is included in the IN set, find the shortest path and the shortest length 2 S ∞ 7 3 x /in 6 9 4arrow_forwardCoordinates for a clipping window and a line are given in the following figure. Use Liang- Q1. Barsky algorithm to clip this line with respect to the clipping window. Show your steps and calculations clearly. Ymax=20- Po(8, 12) Ymin=10 P1(30,6) Xmin=10 Xmax=20arrow_forward
- Use Djkstra's algorithm to find the shortest path from a to z. in order to get credit for this question you must SHOW ALL WORK. 3.arrow_forwardApply Dijkstra's Algorithm to find the shortest path from a to z in the following graph.arrow_forwardII. Use Euclidean Algorithm to obtain x and y satisfying the equation of (50 364, 26 601) = 50 364x + 26 601y. (8 points)arrow_forward
- SHOW COMPLETE SOLUTION1. Solve gcd(158,206) using eclidian algorithm.2. Find integer x and why such gcd(158,206)=158x+206y using working backwards.arrow_forward1 Create a circular curve object with the center of the circle (6.5) being the center of the circle. And it is known that the radius of the circle is 8. And because the radius of r is round, then use P0 = 1 – r. Make it using the Bressenham Algorithm. Write down the calculation results and the coordinates of each point!arrow_forwardPlease solve and explain, thank you!arrow_forward
- Can someone cross all the bridges shown in this map exactly once and return to the starting point?arrow_forwardA chicken farmer wishes to provide electric power to each chicken house on his farm by installing buried electrical power lines. The graph below illustrates the locations of the houses and the distances between them in feet. Use Kruskal's algorithm to determine how the farmer should dig channels in order to minimize the amount of digging. Also determine the minimum total length of channels that must be dug.arrow_forwardGrid Grove is a neighborhood, with houses organized in m rows of n columns. Houses that are closest to each other are connected by a path (note that this organization follows the definition of a grid graph given in lecture). Assume that m, n > 2. As follows from lecture, Grid Grove has mn houses and 2mn – m -n paths. It is also possible to walk to any house from any other house through some sequence of paths. To save money, the landlords want to get rid of some paths. Calculate D, the maximum number of paths that can be removed from the neighborhood without disconnecting it. Justify your answer. Then describe (informally) which D paths of the neighborhood can be removed (there is more than one such set of D paths).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY