Remainders Let f ( x ) = ∑ k = 0 ∞ x k = 1 1 − x and S n ( x ) = ∑ k = 0 n − 1 x k . The remainder in truncating the power series after n terms is R n ( x ) = f ( x ) − S n ( x ), which depends on x . a. Show that R n ( x ) = x n /(1 − x ) . b. Graph the remainder function on the interval | x | < 1 for n = 1, 2, 3. Discuss and interpret the graph. Where on the interval is | R n ( x )| largest? Smallest? c. For fixed n, minimize | R n ( x )| with respect to x. Does the result agree with the observations in part (b)? d. Let N ( x ) be the number of terms required to reduce | R n ( x )| to less than 10 −6 . Graph the function N ( x ) on the interval | x | < 1. Discuss and interpret the graph.
Remainders Let f ( x ) = ∑ k = 0 ∞ x k = 1 1 − x and S n ( x ) = ∑ k = 0 n − 1 x k . The remainder in truncating the power series after n terms is R n ( x ) = f ( x ) − S n ( x ), which depends on x . a. Show that R n ( x ) = x n /(1 − x ) . b. Graph the remainder function on the interval | x | < 1 for n = 1, 2, 3. Discuss and interpret the graph. Where on the interval is | R n ( x )| largest? Smallest? c. For fixed n, minimize | R n ( x )| with respect to x. Does the result agree with the observations in part (b)? d. Let N ( x ) be the number of terms required to reduce | R n ( x )| to less than 10 −6 . Graph the function N ( x ) on the interval | x | < 1. Discuss and interpret the graph.
Solution Summary: The author explains that the remainder of Taylor series is R_n(x)=x
f
(
x
)
=
∑
k
=
0
∞
x
k
=
1
1
−
x
and
S
n
(
x
)
=
∑
k
=
0
n
−
1
x
k
.
The remainder in truncating the power series after n terms is Rn(x) = f(x) − Sn(x), which depends on x.
a. Show that Rn(x) = xn/(1 − x).
b. Graph the remainder function on the interval |x| < 1 for n = 1, 2, 3. Discuss and interpret the graph. Where on the interval is |Rn(x)| largest? Smallest?
c. For fixed n, minimize |Rn(x)| with respect to x. Does the result agree with the observations in part (b)?
d. Let N(x) be the number of terms required to reduce |Rn(x)| to less than 10−6. Graph the function N(x) on the interval |x| < 1. Discuss and interpret the graph.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Chapter 11 Solutions
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.